Archive for May, 2017

New LIGO Announcement Tomorrow (Where’s the Fanfare)

Last year was all about Advanced LIGO’s announcement that they had for the first time detected gravitational waves predicted to exist a hundred years earlier. Understandingly, the press coverage was proportional to the importance of the discovery. The conference which was released in the entire world was, to my knowledge, amongst the events that received the widest press coverage ever for a scientific discovery.

In the field of astrophysics, the only comparable event was probably the detection of primordial gravitational waves by the BICEP2 experiment announced with great fanfare in 2014.

Immediately after the BICEP2 announcement, I predicted that the results would be refuted by further observations. It was not that I was skeptic. It was not just a random opinion, but a direct consequence of quantum-geometry dynamics. The level of confidence in the BICEP2 discovery was so high than very few doubted the validity of the results. I was one of few people who immediately predicted that the results would not hold and as we all know the BICEP2 discovery was refuted later that year.

I made a similar prediction for the LIGO detections the days prior and following the announcement in February 2016. Since the announcement, the sensitivity of LIGO was increased and the second run of observation started in November 2016. Tomorrow, the results of the second run of observations will be released, but this time, there is no press coverage except from two minor local news sources. The release is not even mentioned on the Facebook page of the LIGO collaboration. Why is the release so hush hush? One would think that after the last year’s announcement of the detection of gravitational waves (and the unrelenting news coverage since then) that any news from LIGO would be treated as a highest priority by the media if that is what the LIGO collaboration made the slightest effort to publicize it. But the lack of any attempt to draw attention to the results is probably, as I predicted, because the earlier detection have not be corroborated by new detections.

Good science requires that before being considered a discovery the results of any observation or experiment must be reproducible. Considering its higher sensitivity, the duration of the second run and the theoretical probability of more detection, Advanced LIGO should have made more detections in its second run and it had in its first. Because of that, null results are even more significant than the detection announced last year as they cast doubts on the validity of the discovery.

My prediction is no new detections of black hole mergers announced tomorrow but not to worry, that only provides new constraints on the frequency of events capable of producing detectable gravitational waves, right?

[UPDATE] It seems that they are announcing the detection of one black holes merger (see article here).

From the article:

“Normally, an event like this would trigger an alert to the astronomy community, which could then attempt observations in the area of the sky where the event took place. But, in this case, a recent period of maintenance had left one of the two detectors set in a calibration mode.”

That is disappointing since the simultaneous independent detections of the non-gravitational signals would test the predicted speed of propagation of gravitational waves and would put to rest the prediction of QGD that gravity is instantaneous and that the signals detected by LIGO are due to the tidal effect of gravity.

If QGD’s equation for gravity is correct, gravity becomes repulsive at distances greater than 10Mpc and the magnitude of the repulsion increases as a function of distance (this would account of the expansion of the universe we attribute to dark energy). That means that the greater the distance, the greater the tidal effect of gravity.