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Quantum-Geometrical Space 
Let me say at the outset that I am not happy with this state of affairs in physical theory. 
The mathematical continuum has always seemed to me to contain many features which 
are really very foreign to physics. […] If one is to accept the physical reality of the 
continuum, then one must accept that there are as many points in a volume of diameter 
1013 cm or 1033 cm or 101000 cm as there are in the entire universe. Indeed, one must 
accept the existence of more points than there are rational numbers between any two 
points in space no matter how close together they may be. (And we have seen that 
quantum theory cannot really eliminate this problem, since it brings in its own complex 
continuum.) 

Roger Penrose, On the Nature of Quantum-Geometry 
The Nature of Space 
 
I consider it quite possible that physics cannot be based on the field concept, i. e., on 
continuous structures. In that case nothing remains of my entire castle in the air 
gravitation theory included, [and of] the rest of modern physics. - Einstein in a 1954 
letter to Besso. 
What Einstein might have been referring to is that special relativity and general relativity 
require that space be continuous. The axiom of continuity of space is implied by special 
relativity as well as most current physics theory. 
Einstein understood that if the unstated continuity axiom turned out not to correspond 
to the fundamental nature of space, his theory and all theories which are based on it 
would also fall apart.   
Dominant theories successfully explained and in some case predicted experimental 
observations. That said, even the most successful theories ultimately fail to 
appropriately describe or predict phenomena at scales other than that from which 
observations their theorems were derived.  All the dominant theories have in common 
the axiom of space continuum.  
Quantum-geometry dynamics postulates that space is fundamentally discrete. 
Specifically, that space is quantum-geometrical, that is: Quantum-geometrical space is 
formed by fundamental particles we call  preons  (symbol ( )  p ) and is dimentionalized 
by the repulsive force acting between them.  Thus according to QGD, spatial dimensions 
are emergent properties of  preons  , hence dimentionalized space is not fundamental. 
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The interaction between any two  preons   is the fundamental unit of the force acting 
between them which because it is repulsive we will call n-gravity (symbol  g ).   
It is important here to remind the reader that what exists between two  preons   is the 
n-gravity field of interactions. There is no space in the geometrical sense between them. 
The force of the field between any two  preons  , anywhere in the Universe, is equal to 
one  g . 

Figure 1 is a two dimensional representation of quantum-geometrical space. The green 
circle represents a  preon   arbitrarily chosen as origin and the blue circles represent 

 preons   which are all at one unit of distance from it. As we can see, distance in 
quantum-geometrical space at the fundamental scale is very different than Euclidian 
distance (though we will show below that Euclidian geometry emerges from quantum-
geometrical space at larger scales). 
Quantum-geometric space is not merely mathematical or geometrical but physical. 
Because of that, in order to distinguish it from quantum-geometric space, we will refer 
to space in the classical sense of the term as Euclidian space. 

Figure 1 
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Quantum-geometric space is very different from metric space. A consequence of this is 
that the distance between any two  preons   in quantum-geometric space is be very 
different from the measure of the distance using Euclidian space; the distance between 
two points or  preons   being equal to the number of leaps a  preon   would need to 
make to move from one to the other. 
In order to understand quantum-geometric space, one must put aside the notion of 
continuous infinite and infinitesimal space. Quantum-geometric space emerges from the 
n-gravity interactions between  preons  . What that means is that  preons   do not 
exist in space, they are space.  Since  preons  are fundamental and since QGD is 
founded on the principle of strict causality (this will be discussed in detail later), then 
the n-gravity field between  preons   has always existed and as such may be 
understood as instantaneous. N-gravity does not propagate. It simply exists. 
Figure 2 shows another examples of how the distance between two  preons   is 
calculated.  So although the Euclidian distance between the green  preon   and any one 
of the blue  preons   are nearly equal, the quantum-geometrical distances between the 
same varies greatly.  

 
Figure 2 
Since the quantum-geometrical distances do not correspond to the Euclidian distances, 
the theorems of Euclidean geometry do not hold at the fundamental scale. Trying to 



14  

apply Pythagoras’s theorem to the triangle which in the figure 3 below is defined by the 
blue, the red and the orange lines, we see that 2 2 2a b c   . 
 

 
Figure 3 
 
Also interesting in the figure 3 is that if a  is the orange side, b  the red side and c  the 
blue side (what would in Euclidian geometry be the hypotenuse, then a c b  . That is, 
the shortest distance between two  preons   is not necessarily the straight line. 
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But we evidently live on a scale where Pythagoras’s theorem holds, so how does 
Euclidian geometry emerge from quantum-geometrical space.  Figure 4 below shows 
the quantum-geometry space two identical objects scan when moving in different 
directions.  

 
Here, if we consider that the area in the blue rectangles is made of all the  preons   
through which the object moves through, we see that as we move to larger scales, the 
number  preons   contained in the green rectangle approaches the number of 

 preons   in the blue rectangle, so that if the distance from a  to b or froma  tob  is 
defined by the number of  preons   contained in the respective rectangles divided by 
the width of the path, we find that a b a b   .  
Theorem on the Emergence of Euclidian Space from Quantum-Geometrical Space 
If d  and Eud are respectively the quantum-geometrical distance and the Euclidean 
distance two  preons   , then lim 0Eud d d   . 

Figure 4 
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The theorem implies, beyond a certain scale, the Euclidian distance between two points 
becomes a good approximation of the quantum-geometrical distance, but that below 
that scale, the closer we move towards the fundamental scale, the greater the 
discrepancies between the Euclidian and quantum-geometrical measurements of 
distance.  A direct consequence of the structure of space and the derived theorem is 
that Euclidean geometric figures are ideal objects that though they can be 
conceptualized in continuous space can only approximated in quantum-geometrical 
space (i.e. physical space) to the resolution corresponding to the fundamental unit of 
distance. 
It is important to note that since there are no infinities in QGD, the infinite sign  is an 
impossibly large distance, hence the difference between quantum-geometrical and 
Euclidean distances, though it can become insignificantly small, can never equal to zero. 

 
Figure 5 
In figure 5, if 1n , 2n  and 3n  are respectively the number of parallel trajectories that sweep 

the squares a  , b  and c  , for 1 3n M  , then 
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2 2 2a b c  .  Hence, given the quantum-geometrical length of the sides of any two of 
the three squares above, Pythagoras’s theorem can be used to calculate an 
approximation of a the length of the side of the third. Also, the greater the values of 1n  ,

2n  and 3n  the closer the approximation will be to the actual unknown length. That is 
1
2
2

2 2 2limnnn

a b c
  . 

Interactions between Preons(-) 
We mentioned earlier that the interactions between two adjacent  preons   is repulsive 
and the fundamental unit of n-gravity. Two  preons   are adjacent if there is no other 

 preons   between them. So for two  preons   , a  and b ,  ; 1G a b   g   where 
 ;G a b  is the magnitude of the n-gravity interaction between them. 

To obtain the magnitude of the n-gravitational interaction between any two  preons   
a  and b , we need to take into account the interactions with and between the  preons   
that lie on the line of force connecting them. Thus we need to count the number of 
interactions. Using the simple combinatory formula we find that the magnitude of the n-
gravitational interaction between any two  preons   is  

  2; 2
d dG a b g      (1) 

where d  is the distance measure in number of  preons   between a  and b  .  
We will show in a later section that the repulsive force between space and matter is 
consistent with the effect we attribute to dark energy. 
Properties of Preons(-) 

 Preons   do not exist in space, they are space. This implies since any motion would 
imply that they would themselves be in space, which would contradict the 1st axiom, 
then they must be static. 
And since they are fundamental,  preons   do not decay into other particles the number 
of  preons   is finite and constant which implies that quantum-geometrical space is 
finite and that the Universe is finite. 
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Emerging Space and the Notion of Dimensions 
 
We think of spatial dimensions as if they were physical in the way matter and space are 
physical, but the concept of dimensions is a relational concept which allows us to 
describe of the motion (even that that motion is nil) of an object or set of objects a  
relative to an object or set of objects b taken as a reference.  Different systems of 
reference having directions and speeds relative to a given object or set of objects give 
different measurements of their positions, speed, mass and momentum and, according 
to dominant physics theories, there is no way to describe the motion of a reference 
system relative to space (or absolute motion), thus no way to know anything but relative 
measurements of properties are such as mass, energy, speed, momentum or position. 
However, if QGD is correct in its description of space, then each fundamental unit of 
space is a distinct permanent position relative to all other discrete components of space 
(  preons   being static) so that quantum-geometrical space can be taken as an absolute 
reference system which allows the measurements of the absolute mass, energy, 
momentum and position of any physical objects within our Universe.  
Of course, assuming that space is quantum-geometrical, the question as to whether or 
not it is possible to measure or even detect absolute motion  must be answered and will 
be once we have established the basics of QGD. For now, we will focus our attention on 
essential distinctions between how we represent quantum-geometrical space from 
representation continuous space. 
Dimensions are geometrical constructs which allows us to map to analyse how objects 
relate to each other.  
The dimensionality of space is the number of elements in the largest possible set of non-
concurrent and mutually orthogonal lines that can be drawn through a  preon   .  Space 
being an emergent property of  preons   and all  preons   having identical fundamental 
intrinsic properties, and all interacting to create space, then space must be isotropic.  It 
follows that since all  preons   in the Universe interact with each other, it is possible to 
determine the distance and magnitude of the interactions between any given  preon    
the  preons   lying on each line of an orthogonal set. 

a) The quantum-geometrical unit of space is a single  preons  which differs from 
the point in geometry is that it is has a volume which size corresponds to the   

 preons  fundamental unit of matter. So though we can make each  preons    
correspond to a point in geometrical space, the point has a volume equal to one 
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b) The distance between two adjacent  preons   is the fundamental unit of distance 
and by definition cannot be divided in smaller units. So there the distance between any two points is an integer 

c) A set L  of  preons   for which all lines force acting between them coincide 
maybe understood as a segment of a line.  But such a segment in not one-
dimensional since it is being made of  preons   and therefore has a volume 
equal the number of  preons   it contains. 

d) The maximum number of mutually orthogonal lines with a common  preon  , 
the origin is three   

e) All  preons   are part of the Universe, that is  pa U  , where a  is any given 
 preon   and   pU  is the set of all  preons   . 

f) All  preons  interacts gravitationally with each other so that  
g) a  preon   a  such that a L   interacts n-gravitationally with all  preon L   

and the magnitude of each interactions depends on the quantum-geometrical 
distance between a  and each of the  preons   of L  and 

h) if a L  , the distance from it is zero and  ; 0G a b    
i) It follows that to any  preon   a  can be uniquely assigned a set of coordinates 

relative to 1L  , 2L  and 3L  which are mutually orthogonal lines with common 
origin, 

j) The i   coordinate of a is the distance between  preon   on iL  which is the 
closest to it and the origin. If more than one  preon   of iL  are at the same 
shortest distance, then the coordinate will be the distance from the origin of the 

 preon   which is closest to it.  
k) Since the position of every  preon   in the universe can be uniquely described 

with three coordinates, it follows that the quantum-geometrical space emerging 
from  preons   can be mapped onto discrete tridimensional Euclidean space.  

Conservation of Space 
That quantum-geometrical space is not infinitesimal also implies that geometric figures 
are not continuous either. For example, a circle in quantum-geometric space is a regular 
convex polygon whose form approaches that of the Euclidian circle as the number of 

 preons   defining its vertex increases.  That is, the greater the diameter of the polygon, 
the more its shape approaches that of the Euclidean circle (a similar reasoning applies 
for spheres). 
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The circumference of a circle in quantum-geometric space is equal to the number of 
triangles with base equal to 1 leap which form the perimeter of the polygon. It can also 
more simply be defined as the number of  preons   corresponding to the polygon’s 
vertex. 
Since both the circumference of a polygon and its diameter have integer values, the 
ratio of the first over the second is a rational number.  That is, if we define ߨ as the ratio 
of the circumference of a circle over its diameter, then π is a rational function of the 
circumference and diameter of a regular polygon. 
This implies that in quantum-geometric space the calculation of the circumference or 
area of a circle or the surface or volume of the sphere can only be approximated by the 
usual equations of Euclidian geometry. 
The surface of a circle would be equal to the number of  preons   within the region 
enclosed by a circular path. 
From the above we understand that , the ratio of the circumference of a circle over its 
diameter, is not a constant as in Euclidean geometry, but a function. If  a is the 
proportionality function between the apothem a  of the polygon and its perimeter then, 
since the base of the triangles that form the perimeter is equal to 1, it follows that the 
size of the polygon increases the value of the apothem of the polygon approaches the 
value of its circumradius and  a approaches the geometrical value of . Note that 
the smallest possible circumradius is equal to 1 leap, which defines the smallest possible 
circle. Since in this case 2 6r  and 1r    it follows that ߨሺ1ሻ = 3  1 3  . 
   / 2a n a   
  lima a    
 where n  is the number of sides of the polygon and is a very large number of the 
order of the quantum-geometrical diameter of a circle at our scale (QGD doesn’t allow 
infinities). 
So within quantum-geometrical space, the geometrical  is a natural number that 
corresponds to the ratio of two extremely large integers. In fact, the size of the 
numerator and denominator are such that the decimal periodicity of their ratio is too 
large for any current computers to express.  
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Mathematical operations in quantum-geometry always are carried out from discrete 
units and can only result in discrete quantities. 
In conclusion, the reader will understand that if space quantum-geometrical, then the 
mathematics used to describe it and the objects it contains must also be quantum-
geometrical. Continuous mathematics, though it can provide approximations of discrete 
phenomena at larger than fundamental scales, becomes inadequate the closer we get to 
the fundamental scale.   


