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Calculating and Converting QGD’s Constants and Units (updated) 

By 

Daniel L. Burnstein 

This paper assumes that the reader is familiar with quantum-geometry dynamics and is 

already acquainted with its equations explaining and describing the dynamics of physical 

phenomenon at all scales.  Minimally, one should have read An Axiomatic Approach to 

Physics. 

We have seen that some of the qualitative predictions which distinguish QGD from 

other theories are supported by experimental evidence but its quantitative predictions, 

expressed in natural discrete units derived from its axiom set have not until now been 

converted to conventional measurement units and without such conversions, it is not 

possible to test QGD’s predictions against experimental and observational data.  

The aim of the present paper is to fill that gap, thus making quantum-geometry 

dynamics a fully descriptive and predictive theory. 

The Constants, Units and Quantities of QGD 

QGD uses very few constants and units: 

 
preon

  : The fundamental particle of matter and the fundamental unit of mass. 

c : The momentum vector of the  
preon

 whose magnitude is fundamental and given 

by c c  

 
preon

  : The fundamental particle of space  

d
 : The preonic  leap which is the fundamental unit of displacement 

 
g

  : The fundamental unit of n-gravity which corresponds to the magnitude of the 

repulsive force between any two  
preons

  or    
g g

 
  . 

 
g

 : The fundamental unit of p-gravity which corresponds to the attractive force 

between  
preons

   or    
g g

 
   

k  : The proportionality constant between  
g

 and  
g

 ;    
g k g

 
  . 

http://www.quantumgeometrydynamics.com/blog/an-axiomatic-approach-to-physics/
http://www.quantumgeometrydynamics.com/blog/an-axiomatic-approach-to-physics/
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aP  : momentum vector of a particle or structure 

aP : momentum of a particle or structure  where
1

am

a i

i

P c


   :  

aE  : energy of a particle or structure
1

am

a i

i

E c


  

av  : speed of a particle or structure where 
1

am

i
a i

a

a a

c
P

v
m m


 


  

We need two things if QGD is to be a fully descriptive and predictive theory. The first is 

that we assign numerical values to the constants and find a way to convert  the natural 

units of QGD into conventional measurement units.  

Assigning Value to d   

Quantum-geometry dynamics is an axiomatic theory but there is no way to axiomatically 

derive d
 or the corresponding value in conventional units. Also, by definition, it is not 

physically possible to measure it. This leaves us with only one alternative, which is the 

use of placeholder value. In a previous version of this paper, I suggested using the 

Planck length as a place hold value which we would later correct or (most probably) 

replace to solve discrepancies between QGD’s predictions using the placeholder value 

and observational and experimental data. But when equating d with the Planck length 

and solving QGD’s gravity equation to derive the masses of gravitationally interacting 

bodies we find that d
is orders of magnitude smaller.  

Assigning Value to k   

The simplified QGD equation for gravitational interactions  
2

;
2

a b

d d
G a b m m k

 
  

 
 

where am  and bm  are the masses of objects a  andb  in  
preons

 . The gravitational 

interaction equation predicts that for the distance d  such that 
2

2

d d
k  
   the 

gravitational interaction between two objects must be equal to zero, that is  ; 0G a b   

(for d d  gravity becomes negative and is, as we explained in other papers, is 

responsible for the effect we call dark energy).  
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So in order to find d  and if QGD is correct, there should be systems with zero 

gravitational interactions between. Recent observations suggest that that 10d Mpc 
i.  

Since 2310 3*10Mpc   meters and  ; 0G a b  the 
233*10

d
d

   then resolving  

2

2

d d
k  
 we find that k . 

Assigning Conventional Value to the Mass of a  Preon


 

Now that we have a value for k  and d
, we can describe quantitatively the gravitational 

interactions between bodies of known masses a  and b  and between a  and b  and 

make use of the equivalence principle to calculate am  in  
preons

  .  

Once we know the mass of a body in  
preons

  , we can use it as a reference to calculate 

the masses of other objects which. 

Unlike QGD geometrical properties which can be converted into conventional units, 

there are several differing definitions and conventions of mass used by current physical 

theories. There are the gravitational mass, the rest mass, the inertial mass, the 

relativistic mass, the active and passive gravitational mass, etc. As we see, all of these 

notions of mass can be derived from QGD’s natural definition of mass. 

The Inertial Mass 

a F
a

a a

P P
v

m m


    so 

a a Fm v P  and the inertial mass is given by a
a

a

P
m

v





which is the 

same as the QGD mass. 

Gravitational Mass 

 
2

;
2

a b

d d
G a b m m k

 
  

 
 . The gravitational mass is not intrinsic to an object since 

gravity is the result of the interactions between at least two objects.  

What we call the gravitational mass, is then simply the derivation of the absolute mass 

from a measurement of the magnitude of the gravitational interaction between the 

object and a second object of known mass. 
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For instance, if am  is determined, than we can resolve the gravitational interaction 

equation for bm  . Here again, the mass derived from gravitational interaction is the QGD 

mass. 

Rest Mass and Relativistic Mass 

Unless an object absorbs particle (which it does only when non-gravitational forces are 

applied to a body) the mass of an object does not change with speed.  

The mass remains equal to the number of  
preons

  it contains. What changes under 

the influence of gravity is the net orientation of the components  
preons

 , what we call 

its momentum given by the equation 
1

am

a i

i

P c


  . The magnitude of 
aP  increases in 

towardsb   when  ; 0G a b   and increases away from b  when  ; 0G a b  but as we 

explained it mass am  or its energy 
1

am

i

i

c


  remain constant. 

For a body at rest, which is, a body that which experiences no displacement as a whole 

in quantum-geometrical space, we would have 
1

0
am

i

i

c


  .  

The relation between mass and energy expressed by 
1

am

a i a

i

E c m c


   is a 

proportionality relation. Here again, the relativistic and QGD mass are one and the 

same. 

It follows that the definitions of mass used in physics are conventional and are not 

based on fundamental physics. Which is why the conversion of the intrinsic and 

absolute mass used in QGD should not be converted to conventional units. All 

calculations must be made using the absolute mass. 

 

Assigning Value to the c  

According to QGD, the speed of an object is an intrinsic property that is independent of 

the frame of reference. The intrinsic (or absolute) speed of an object a  is given by 
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a

a

a

P

m
   where am  is its mass of in  

preons
  and 

aP  is its momentum given by 

1

am

a i

i

P c


   . 

The momentum of a  
preon

  is fundamental and equal given by  
p

P c c     so 

using the equation for speed we find that the speed of a  
preon

  is 
 

  1

p

p

P c
c

m





   .  

Note: Though speed and momentum of a  
preon

  are numerically equal they are two 

distinct physical properties so we always must keep in mind the context in which c  is 

used when discussing  
preons

  so that we can make the distinction. For any other 

particle (the photons and neutrino, for example), since all their component the 

momentum is equal to their energy, that is 
1 1

a am m

i i a

i i

c c m c
 

    and speed equal to 

a

a

m c
c

m
  so that there is no possible confusion as to the meaning of c  . 

Since 
 

 
;

sin
G a

P


  so that  

2

2
sin

a

d d
m m k

m c







 
 

    then 

 

2

2

sin

a

d d
m k

c


 
 

   . 

Note: an alternative approach based on the mechanism QGD proposes for the formation 

of particles from  
preons

  suggests that c k  .  

Once d is known, using QGD’s equation for gravity, we can also derive the mass of the 

Sun in  
preons

  and by inserting this value and the angle of deflection of starlight by 

the sun into the equation describing the gravitational interaction the Sun and light, we 

can derive the value of c .  
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Of course, all three methods described above must arrive at the same value of c . That 

could be a test of the correctness of d
  or,  depending on the point of view, be taken as 

a set of equations which unique solution is the actual value of c  . 

Correspondence between Intrinsic Speed and Conventional Speed  

If a
a

d
v

t
   and 

d
v

t




   All that we need to know is that 

/

/

a a a
a

v d t d
c c v

v d t d  


  


 so that 

having a value for c  we can go back and forth between the relative speed av  and av  . 

Then, by comparing the predictions of QGD to observations, we can correct or replace 

the placeholder value so that predictions using the new value will be consistent with 

observations and allow for a new set of predictions. The process should be repeated 

until the predictions of QGD are consistent even with one observation, at which point all 

QGD’s descriptions using the corrected value will allow predictions that are consistent 

with all observations regardless of scale. 

Once we have a good approximation of the constants and units of QGD, it will be 

possible to apply the equations to dynamic systems at all scales.  

Below is suggested application of QGD to a dynamic system consisting of n 

gravitationally interacting bodies. 

Application to States of Gravitationally Interacting Bodies 

The two bodies systems described by the simplified gravitational interaction equation is 

the basis of the state matrix used to describe the behaviour of a system composed of n  

gravitationally interacting bodies.  

The change in momentum due to gravitational interaction is given by 

 
     

 
 

2 1

1 2 2

2

; ; cos
; ;

;
a

G a b G a b
P G a b G a b

G a b





      (1) 

where  is the angle between  1 ;G a b  and  2 ;G a b which are respectively the 

gravitational vectors between a  andb  in states 1  and 2  and   1 2 ;G a b  is 

understood to be the difference in the magnitude of the gravitational interaction 

between a  andb  from state 1 to state 2 (or 1 2  ) 

For a system consisting of n  gravitationally interacting bodies,  
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 
     

 
 1 1

1 11

1

1

1

11 1

; ; cos
; ;

;

s s s s

i s s s ss

s s

n n
s i j s i j

a i j s i j

jj s i j

G a a G a a
P a a G a a

G a a
G


 

 







 


           (2) 

where ia  and 
ja  are gravitationally interacting astrophysical bodies of the system, 

j i  and s  and 1s   are successive states of the system (a state being understood as 

the momentum vectors of the bodies of a system at given co-existing positions of the 

bodies) and 
|i s xa 

 is the body ia  and its position when at the state s x  . The position 

itself is denoted 
|ia s x 

.  

In order to plot the evolution in space of such a system, we must choose one of the 

bodies as a reference so that the motions of the others will be calculated relative to it. A 

reference distance travelled by our reference body is chosen, 
refd , which can be as 

small as the fundamental unit of distance (the leap between two  
preons

 or preonic 

leap) but minimally small enough as to accurately follow the changes in the momentum 

vectors resulting from changes in position and gravitational interactions between the 

bodies.  

So given an initial state s  , the state 1s   corresponds to the state described by the 

positions and momentum vectors of the bodies of the system after the reference body 

travels a distance of 
refd . For simplicity, we will assign 1a  to the reference body. 

 

 

1| 1 1| 1

| 1 |

1| | 1 | 1
1

| | 1 | 1
1

; |

1 ... | ...

; |

s s

n s n s n

n

a a s j s a s
j

n

a a n s j s a s
j

P P G a a

s

P P G a a









 


 


 
   

 
   

 
   
 

 

 

Using the above state matrix, the evolution of a system from one state to the next is 

obtained by simultaneously calculating the change in the momentum vectors from the 

variation in the gravitational interaction between bodies resulting from their change in 

position. Changes in the momentum vectors have are as explained earlier. Changes in 

position are given by 
1

| 1 |
i

i i i

i

a ref

a s a s a

a a

v d
P

v P
    . The distance travelled by ia  from s  to
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1s   is   
1

ia

ref

a

v
d

v
 (for 1j   , the distance becomes simply 

refd ) and distance between 

two bodies of the system at state s x  is 
; | | |i j i ja a s x a s x a s xd       . 

Of course, we find that  for i j , then ; | 0
i ja a s xd   , so that 

     1 | 1 | 1 | 1 | 1 | |

2 2
; | 1 ; | 1 ; | ; |

; ; ;

2 2

0

i i i j i i i i

s i s j s i s i s i s i s

a a s a a s a a s a a s

a a a a

a a a a

G a a G a a G a a

d d d d
m m k m m k

m m k m m k

    

 

  

   
        

  

 



, 

the variation in the gravitational interaction between a body with itself is equal to zero, 

which implies that its momentum vector will remain unchanged unless 1n   and 

 | | 1
1

; 0
n

n s j s
j
G a a 


  . This is the QGD explanation of the first law of motion. 

Note also that for an object 
ja  freefalling towards an object ia  , 0   so equation  (2) 

becomes  
   

 
 1 1

1 11

1

1

1

1 1

; ;
; ;

;

s s s s

i s s s ss

s s

n
s i j s i j

a i j s i j

j s i j

G a a G a a
P a a G a a

G a a
G

 

 







 


    and 

 
   

 
     1 1 1

1 1 1 1 1 1

1 1

1

1 1

1 1

; ;
; ; ; ;

;

s s s s

s s s s s s s s

s s

n
s i j s i j

i j s i j s i j s i j

j s i j

G a a G a a
a a G a a G a a G a a

G a a
G

  

     

 



 

 


  

 

  

 

 

 

 

                                                           
i
 Dark energy and key physical parameters of clusters of galaxies  http://arxiv.org/abs/1206.1433 
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