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While Bell’s theorem and its proof via the violation of Bell’s inequality are considered irrefutable 

proof of the non-locality of nature at the microscopic scale it is, to be precise, a proof that 

nature doesn’t conform to a particular definition of local realism as defined in the EPR paper. 

But does the proof of Bell’s theorem refute other definitions of local realism which may better 

describe reality? 

Bell’s theorem states:  

No theory of local hidden variables can reproduce all of the predictions of quantum mechanics. 

In axiomatic terms, Bell’s theorem is simply a special case of the more general theorem: 

It is not possible to derive all predictions of a theory from a second theory when the theories 

considered are based on mutually exclusive axiom sets. 

When applied to quantum mechanics and a hidden variable theory, all that is required to prove 

Bell’s theorem is to find two mutually exclusive axioms, one belonging to the axiom set of the 

hidden variable theory and the other belonging to quantum mechanics. But such a proof would 

do nothing to answer the question of completeness of quantum mechanics. 

In order to answer that question, the usual proof of Bell’s theorem proceeds first with a 

generalization of hidden variables theories and derives from it a prediction of the probabilities 

of coincidences of measurements; what we call Bell’s inequality.  Since the predictions of Bell’s 

inequality are distinct from that which is derived from quantum mechanics, the question is to be 

settled by experiment. 

All experiments violate Bell’s inequality and support quantum mechanics prediction therefore 

are understood to provide the definitive answer to the question as to whether reality is local or 

non-local (though they do not provide a definitive answer as to the completeness of quantum 

mechanics).  

While the proof of Bell’s theorem is the inevitable consequence of the generalization of hidden 

variables theories from which Bell’s inequality is derived, the generalization itself must be 

questioned. 
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Hidden Variables States 

The key implicit assumption in Bell's generalization of hidden variables is that the states which 

are measured are intrinsic to the particles. The definition of a state is given as one that will 

determine whether a property will or will not be detected by one or more detectors. For a 

detector 1D , there are two possible states; pass or fail. For three tests, 1D , 
2D and 

3D , we thus 

have eight possible states (see table 1). As one can see, the number of possible states is 

dependent on the number of tests that one can perform1.  

The possible measurements of particles having the eight possible states are tabulated and from 

them is derived Bell’s inequality which constrains the predictions of derived from any hidden 

variable theories. A simple example of this is given below. 

In table 1, we have the eight possible states as their ability to pass or fail tests 1D , 2D and 3D . 

Table 2 shows labels “1” when two tests performed on particles having the same state both pass 

or both fail the test. 

 

 

 

 

 

                  

  

Ignoring the cases where all measurements are the same, which doesn’t provide any 

information allowing us to distinguish the properties of the particles are left with measurements 

2 to 7 of the correlation table.  The probability of have two particles either passing or both 

failing two distinct tests is 1/3 or .333. This is in disagreement of quantum mechanics prediction 

of .250. Experiments confirm that quantum mechanics prediction is correct. 

This is assumed to refute hidden variables, but the description of hidden variables ignores an 

important physical influence resulting from interactions between the particles and their 

detectors. We will show now that by assuming a local effect of detectors on the state of 

particles as defined in Bell’s paper we can derive predictions that are not only consistent with 

                                                           
1 Note: This dependence of the number of states on the number of tests is a strong theoretical 

bias since it implicitly contains quantum mechanics’ definition of reality. 

 

Table 1 

 
state 

1D  2D  3D  

1 + + + 

2 + + - 

3 + - + 

4 + - - 

5 - + + 

6 - + - 

7 - - + 

8 - - - 

Table 2 

 
state 

1 2D D   2 3D D  1 3D D  prediction 

1 1 1 1 1 

2 1 0 0 1/3 

3 0 1 0 1/3 

4 0 0 1 1/3 

5 0 0 1 1/3 

6 0 1 0 1/3 

7 1 0 0 1/3 

8 1 1 1 1 
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the measurements of Bell experiments, but also provide a local realistic explanation of the 

measurements of so-called quantum entanglement experiments. 

To avoid any misleading mathematical abstractions and keep to as strict a physical 

interpretation as possible, we will only consider Stern-Gerlach experiments on electrons and the 

measurements of the directional components of the property of spin understood as determining 

whether or not an electron will pass the detectors of the apparatus. 

Here, we will work from the assumption that the measured state of a particle is not intrinsic to it 

but results of the local interaction between the particle and the detectors (which qualifies as a 

hidden variable), then we will derive predictions in a manner similar to how Bell’s inequality is 

derived. 

Let us assume three types of detectors: 1D , 2D and 3D which relative orientations are such that

1 2 12D D    , 2 3 23D D   and 1 3 13D D   . Let us assume a group of 0n  electrons from a 

source which spins are not polarized. 

When passing through 1D , all of the 0n  electrons are subjected to the detector’s magnetic field. 

Let’s assume that each electron interact with the magnetic field in a way that depends on the 

orientation which in turn determine its resulting change in its trajectory. Let’s assume that in 

addition to a change in trajectory, the electrons also experience changes in the directional 

components of their spins.  

The orientation of the spin of an electron can have any value from 0   to 2  relative to the axis 

of 1D . If the magnetic field is composed of polarized particles moving in at angles between 0  

and   and between   and 2 , they may be absorbed by electrons which orientations have 

orientations respectively between 0  and   and between   and 2 .  

The detector is set up so that electrons which relative spin angle are between 0  and  , will 

pass through and the electrons with spin between   and 2 will not. 

So for a group of n  electrons with random spin orientation, we can predict that 1n , the number 

of electrons that will pass 1D , is given by 0
1 0

2 2

n
n n




    and all 1n  electrons with have 

directional components of spin between 0  and  . So half of the electrons will pass through 1D  .  

Now, if those 1n  electrons are directed to a second detector, 2D , their orientation relative to the 

axis of 2D will be from  12  to 12  (see figure 1b below).  
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Figure 1 

Here we see that 2n  , the number of electrons that will pass 2D  must be 12
2 1

2
n n

 




  . 

Now, let’s assume that 12  so that 2 0n   , as the electrons pass through the magnetic field 

of 2D , they will be interacting with the particles composing the magnetic field which the angles 

of motion are between 0  and  degrees relative to the axis of 2D . That is, it will impart the 

electrons with changes in momentum that are between 0  and  degrees relative to the axis of 

2D . The 2n  electrons will have directional components relative to the axis of 2D  that will vary 

between 0  and  degrees (see figure 1c). 

Consequently (figure 1d), when the 2n  electrons enter 3D , the number of electrons that pass 

this last detector is given by 23
3 2

2
n n

 




 . 
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In the special case (figure 2) where 12   , we would find 2 1 0
2

n n
 




  . That is, no 

particles would pass through 2D if it axis correspond to a rotation of   degrees from the axis of 

1D  .  

 

Figure 2 

But if between two detectors at   degrees angles we introduce a third detector at angle 

12   , we find that 23
2 1 0

2
n n

 




   (figure 3d). 

 

Figure 3 
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This explains classically why though 
1 0n   when 

12  , we will have 
2 0n   when 

12   

and 23 12    , that even though 12 23     . We can thus use the above hidden variables 

to predict deterministically the number of electrons that will pass through any series or 

arrangements of detectors. 

In order to prove the above, all that is needed is to test the predictions for Stern-Gerlach 

experiments derived from the general equation 1,

0

1 2

x
i i

x

i

n n
 








   where 0n  is the initial 

number of unpolarised electrons from a source and 1,i i   is the angle between the detector iD  

and the previous detector 1iD   in the sequence 1 2 3... ... XD D D D   for 1i   and where 

since there  is no 0D  for 1i   we have 0,1 0  . 

Let us know examine the proposed generalisation of hidden variable theories given in table 1.  

From the simple assumption that the orientation of the spin is 

affected by the magnetic field of detectors we find that: 

The particle in state 1 is a special case where 
1s

  the angle of 

the electron spin relative to 1D    is between 0  and   and  

112 s   and 
223 s  where 

2s
  is the angle relative to 2D  

after interacting with its magnetic field if a single electron passes 

successively through the detector in the exact (not reversible 

sequence) 1 2 3D D D   or if table 1 represents distinct 

electrons going through each detector, which we will represent by 1 2 3| |D D D , then 

12 23 s       . 

State 2 is a special case where 
1s

  the angle of the electron spin relative to 1D   is between 0  

and   and  
112 s   if 1 2 3D D D  . If 1 2 3| |D D D then 12 s    and 12s  . 

In fact, we can show that all the states which together are assumed to generalize hidden 

variables represent a small subset of all possible states when possible angles of spin, relative 

angles of detectors, their sequences and other physical characteristics (such as the density of 

their magnetic field) are taken into account.  

Thus if the assumption regarding the interaction between electrons and detectors is correct 

(that is: experimentally supported), then the set of states used to derive Bell’s inequality is not a 

generalization of hidden variable theories. Since experiments are consistent with the predictions 

derived from the above assumption, it follows that Bell’s inequality does not constrain hidden 

variables theories. Consequently, the violation of Bell’s inequality does not refute local realism.  

Table 1 

 
state 

1D   2D  3D  

1 + + + 

2 + + - 

3 + - + 

4 + - - 

5 - + + 

6 - + - 

7 - - + 

8 - - - 
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If Bell’s generalization of hidden variables is incomplete then the inequality derived from it loses 

all meaning. As a consequence, whatever Bell experiments are conducted and whatever their 

results, they would be irrelevant to the question posed by the EPR paper. Determining whether 

nature is local or non-local may come down to whether or not some predictions made using our 

model are distinct from some predictions of quantum mechanics and whether or not such 

distinct predictions are consistent with experimental data. 

The model we introduced here can be used make predictions for the outcomes of any 

arrangement of detectors. The predictions are deterministic rather that probabilistic. For 

experiments where each particle is measured once, the predictions are equivalent to quantum 

mechanical descriptions. That is, 
| .25

x yD Dp   regardless of the orientation of 
xD  and yD . 

Hence such experiments cannot distinguish between our model and quantum mechanics. But 

for experiments using arrangements where particles are tested more than once, our predictions 

differ significantly from those of quantum mechanics. For multiple measurement experiments, 

the probability of equal outcome of two series of measurements is given by: 

1 1

1,1,

... | ...
1 12 2x y

yx
j ji i

D D D D
i j

p
  

  
 
 



   
 


    

Thus multiple measurement experiments can answer the EPR question. 

Also, that a hidden variables theory can predict with certainty the outcome of so-called 

quantum entanglement experiments without quantum entanglement puts into question the 

existence of the quantum entanglement and should at the very least hint that quantum 

mechanics is, as Einstein, Podolsky and Rosen suggested, incomplete. 


