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Abstract 

Quantum-geometry dynamics: a theory derived from a minimal set of axioms that can describe, 

explain and predict the behaviour of dynamic systems.  

First, we will introduce a set of axioms and corollaries which will be used to fundamentally 

define space, mass, momentum, energy and forces.  This will be followed by a discussion of 

quantum-geometrical space and its geometry. Then, we will show how gravity emerges naturally 

from the axiom set and introduce a new equation for gravity that can be applied at different 

scales. At the same time, we will provide quantum-geometrical interpretations of the laws of 

motion and use them to describe dynamic systems. We will follow by providing quantum-

geometrical grounds for key predictions of special relativity, general relativity and Newtonian 

mechanics.  Although quantum-geometry dynamics will be shown to be in agreement with 

physical observations and with the predictions of special and general relativity, quantum-

geometry dynamics allows for distinct falsifiable predictions that set it apart from them.  

1. Introduction 

For several decades now, mathematicians and physicists have tried to reconcile quantum 

mechanics and general relativity, two of the most successful physics theories in history, but 

despite their best efforts such unification has remained beyond the limit of the scientific 

horizon.  

The problem, we believe, stems from the fact that the axiom sets of quantum-mechanics and 

general relativity are mutually exclusive.  It is a mathematical certainty that unification of axiom 

sets which contain mutually exclusive axioms is impossible, as is the unification of the theories 

derived from them. In other words, it is mathematically impossible to unify quantum mechanics 

and general relativity without abandoning some of the axioms of their respective axiom sets, 

but abandoning any of the axioms amounts to giving up on one, if  not both theories. In fact, it is 

impossible to give up on one without giving up on the other since both are necessary to describe 

reality at all scales.  Hence the impasse physicists have struggled with. Unification of the two 

theories requires that their axiom sets be unified, which in turn requires that their axioms be 

complementary and not, as are those of QM and GR, exclusory.  QM and GR cannot be 

reconciled. 

We propose here an alternative approach. Intuiting that at its most fundamental, reality is also 

at its simplest, we construct the simplest possible axiom set that can describe a dynamic system; 

one where each axiom corresponds to a fundamental aspect of reality agreed upon by all 
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theories of physics. That is, the existence of space and the existence of matter. We will show 

that from such a minimal set of axioms a theory can be developed that describes and explains all 

physical phenomena, thus is in agreement with the predictions of quantum-mechanics and 

general relativity. Most importantly, a theory that is in complete agreement with physical 

reality. 

In the next section, we will introduce the axiom set and some corollaries of the individual 

axioms. Subsequently, we will show how these axioms and their corollaries can be applied. It is 

important to remember that it is not the existence of the fundamental particles and forces we 

introduce here that we will question (these must be treated as axioms, that is, propositions that 

are assumed to be true), but rather the consequences of assumption of their existence. 

The questions one must ask about any proposed theory are: 

1. Do its axioms form an internally consistent set? 

2. Is the theory rigorously derived from the axiom set? 

3. Are all descriptions derived from the axiom set consistent with observations? 

4. Can we derive from the axiom set explanations of observations? 

5. Can we derive from the axiom set unique testable predictions?  

The reader should keep them in mind when getting acquainted with the approach we are 

presenting here. 

2. Axioms and Corollaries 

It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic 

elements as simple and as few as possible without having to surrender the adequate 

representation of a single datum of experience. 

        Albert Einstein 

 

In mathematics, an axiom is “a proposition that is assumed without proof for the sake of 

studying the consequences that follow from it”. But this definition is not sufficient when it 

comes to physics. Within the context of an axiomatic physics theory, an axiom will also be 

understood to be a proposition about the existence of a fundamental aspect of reality. QGD is 

based upon the following axioms1: 

1. Axiom:  An aspect of reality is fundamental if it remains absolutely invariant under any 

changes of the physical system. This implies that: 

i. a fundamental particle never transmutes or decays into other particles,  

ii. a fundamental particle cannot be the result of the combination of other 

particles, and 

iii. the intrinsic properties of fundamental particles are invariant 

                                                           
1
 For a detailed discussion, see Introduction to Quantum-Geometry Dynamics 

http://quantumgeometrydynamics.com/IntroductionToQuantumGeometryDynamics.pdf
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2. Axiom: There exist only two types of fundamental particles: 

i.  
preons

 , which are the fundamental particles of space, and 

ii.  
preons

 , which are the fundamental particles of matter. 

3. Corollary:  From 1 and 2, regardless of any changes of state or physical transformation 

or event: 

i. the number of  
preons

  is constant . Therefore space is conserved. 

ii. the number of  
preons

  is constant.  Therefore matter is conserved. 

 

4. Axiom:  There exist only two fundamental forces, n-gravity, a repulsive force which acts 

between  
preons

 and p-gravity, an attractive force which acts between  
preons

 . 

More specifically: 

i. The interaction between any two  
preons


, denoted g 

, is the fundamental 

unit of n-gravity. 

ii. The interaction between any two  
preons


, denoted g 

, is the fundamental 

unit of  p-gravity. 

iii. g k g  , where k  is the proportionality constant between the magnitudes 

of g and g .  

5. Corollary:  From 2i and 4i, spatial dimensions emerge from the n-gravity interactions 

between  
preons


.  We will call such space quantum-geometrical.  Hence: 

i. There exists nothing between  
preons


 except the force that acts between 

them. There is no space between them, only force. 

ii.  
preons


 , the fundamental particle of matter, exist within  

preons


  

Note: One could think of space as discrete regions where matter exists. 

6. Axiom:  The  
preon


is a strictly kinetic particle whose momentum causes it to move by 

leaping between  
preons


 at a rate of one leap per state change of the universe.  

7. Corollary:  From 1, though the direction of the momentum vector of a  
preon


 can 

change, its magnitude is fundamental and thus never changes.  

 

8. Corollary:  From 2i, all particles and material structures are composed of  
preons


 

bound by p-gravity.  This implies that all even particles we currently consider to be 

elementary are composite. 

9. Corollary: From 5, all  
preons


exist in quantum-geometrical space, and from 6, as they 

move, they transitorily form    
preon preon

 
 pairs, denoted

 
preons


 . Since all 

fundamental intrinsic properties are conserved, 
 

preons

  must interact 
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i. with other 
 

preons

 through both n-gravity and p-gravity and 

ii. with  
preons


through n-gravity. 

10. Axiom:  All changes in a physical system are strictly causal. A physical system evolves 

through causally linked changes of states. 

11. Corollary:  From #10, it follows that physical systems are strictly deterministic. 

12. Corollary:  From #3, all dynamic systems tend to resolve themselves so as to remain in 

agreement with the laws of conservation.  

13. Definition:  The mass of a particle or structure is equal to the amount of matter it 

contains, thus equal to the number of  
preons

 it composed from. For an object a  we 

will denote this number, its mass, by am  .  

14. Definition:  The momentum vector of a  
preon


is represented by c  and its magnitude 

corresponds to its momentum, thus c c .  

15. Definition:  The momentum vector of a particle or structure a  is the vector sum of the 

momentum vectors of its component  
preons


 or 

1

am

a i

i

P c


 . Thus the momentum of 

a , denoted aP , is given by 
1

am

i

i

a a cP P


  . 

16. Definition:  The energy of a particle or structure is the sum of the momentums of its 

component  
preons


. That is: 

1

am

a ai
i

E c m c


   or simply a aE m c  

where ic is the momentum vector of the  
preon


  of ia .   

17. Definition:  The speed av   of particle or structure a  is the ratio of its momentum to its 

mass. That is: 

1

am

i
a i

a

a a

c
P

v
m m


 


 . 
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3. The Structure of Space 

The force between any two  
preons


 is the fundamental unit of n-gravity force g 

  .  Unlike 

continuous geometrical space, points, lines, surfaces all have volumes According to QGD, spatial 

dimensions are emergent properties of  
preons


; hence space is not fundamental.  

It is important here to remind the reader that what exists between two  
preons


 is the n-

gravity field. There is 

no space in the 

geometrical sense 

between them. The 

force of the field 

between any two 
 

preons


, 

anywhere in the 

Universe, is equal to


 g . 

Figure 1 is a two 

dimensional 

representation of 

quantum-geometrical 

space. The green circle represents a  
preon


 arbitrarily chosen as origin and the blue circles 

represent  
preons


 which are all at one unit of distance from it. Distance in quantum-

geometrical space at the fundamental scale is very different from Euclidian distance (though we 

will show below that Euclidian geometry emerges from quantum-geometrical space at larger 

scales). 

Quantum-geometric space is physical and not purely mathematical or geometrical. Because of 

that, in order to distinguish it from quantum-geometric space, we will refer to space in the 

classical sense of the term as Euclidian space. 

Quantum-geometric space is very different from Euclidian space. A consequence of this is that 

the distance between any two  
preons


 in quantum-geometric space is very different from the 

measure of the distance using Euclidian space; the distance between two points or  
preons


 

being equal to the number of leaps a  
preon


 would need to make to move from one to the 

other. 

In order to understand quantum-geometric space, one must put aside the notion of continuous 

and infinite space. Quantum-geometric space is created by the n-gravity interactions between 

Figure 1 
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 
preons


. 

 
Preons


 do not propagate through space, they are space.  Since  

preons


are 

fundamental and since QGD is founded on the principle of strict causality, then the n-gravity 

field between  
preons


 has always existed and as such may be understood as instantaneous. 

N-gravity (or p-gravity for that matter) does no propagate. It just exists. 

Figure 2 shows another example of how the distance between two  
preons


 is calculated.  So 

although the Euclidian 

distance between the 

green  
preon


 and 

any one of the blue 
 

preons


 are nearly 

equal, the quantum-

geometrical distances 

between them varies 

greatly.  

Since the quantum-

geometrical distances 

do not correspond to 

the Euclidian 

distances, the theorems of geometry do not hold. Applying Pythagoras’s theorem to the triangle 

which in figure 3 is defined by the blue, the red and the orange lines, we see that 2 2 2a b c   . 

 Also interesting the above 

figure is that if a  is the 

orange side, b  the red side 

and c  the blue side (what 

would in Euclidian geometry 

be the hypotenuse, then 

a c b  . That is, the 

shortest distance between 

two  
preons


 is not 

necessarily the straight line. 

But evidently, we live on a scale where Pythagoras’s theorem holds, so how does Euclidian 

geometry emerge from quantum-geometrical space?  

Figure 2 

Figure 3 
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Figure 4 shows the  
preons


 through which two objects of similar size pass through  quantum-

geometrical space but in different directions. If we consider that the area encompassed by the 

blue rectangles is made 

of all the  
preons


 

through which the 

object passes, we see 

that as we move to 

larger scales, the 

number of  
preons


 

contained in the green 

rectangle approaches 

the number of 
 

preons


 in the blue 

rectangle, so that if 

the distance from a  to

b or from a  tob  is 

defined by the 

number of  
preons


 

contained in the 

respective rectangles divided by the width of the path, we find that a b a b   .  

Theorem on the Emergence of Euclidian Space from Quantum-Geometrical 

Space 

There exist a minimum quantum-geometrical distance mind such that if d  , the quantum-

geometrical distance between two  
preons


 ,  if mind d  then Ed d , where Ed  is the 

Euclidean distance between the two  
preons


 . 

Beyond a certain scale, the Euclidian distance between two points provides a good 

approximation of the quantum-geometrical distance, but below that scale, the closer we move 

towards the fundamental scale, the greater the discrepancies between Euclidian and quantum-

geometrical measurements of distance.   

Figure 4 
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In figure 5, if 1n , 2n  and 3n  

are respectively the number 

of parallel trajectories that 

sweep the squares a  , b  

and c  , for 1 3n M  , then 

1

1

1

n

i

ì

d

a
n



 , 

2

1

2

n

i

ì

d

b
n



and

3

1

3

n

i

ì

d

c
n



so that 

2 2 2a b c  .  Hence, given 

the quantum-geometrical 

length of the sides of any 

two of the three squares 

above, Pythagoras’s 

theorem can be used to 

calculate an approximation 

of a the length of the side of the third. Also, the greater the values of 1n  , 2n  and 3n  , the closer 

the approximation will be to the actual unknown length. That is  
1

2

2

2 2 2lim
n
n
n

a b c




  . 

4. Propagation 

Simply put, propagation implies motion; the displacement of matter (  
preons


) through 

quantum-geometric space. A  
preon


, which is the fundamental particle of matter, moves by 

leaps from  
preon


 to  

preon


 . Therefore, the displacement of a  
preon


 is equal to the 

number of leaps it makes.  

The speed of  
preons


 is limited by the structure of quantum-geometrical space. That is, a 

 
preon


 must move by a succession of single leaps between adjacent  

preons


 along a 

trajectory determined by its momentum vector. So the preonic leap, or leap, must be the 

smallest unit of motion.  

5. Interactions 

Interactions do not require the displacement of matter. So unlike propagations, interactions are 

not mediated by quantum-geometrical space (  
preons


).  

Figure 5 



An Axiomatic Approach to Physics / by Daniel L. Burnstein 

- 9 - 
 

We have explained that quantum-geometrical space is generated by the interaction between

 
preons


; by the n-gravity field between them. N-gravity does not propagate through 

quantum-geometrical space, it generates it. Therefore n-gravity is instantaneous. Also, p-gravity, 

the force acting between  
preons


, is similarly instantaneous.  

It follows that gravity, which will be described in the next section as the combined effects of n-

gravity and p-gravity, must also be instantaneous.  

6. Forces, Interactions and Laws of Motion 

The dynamics of a particle or structure is entirely described by its momentum vector. The 

momentum vector can be affected by forces, which imply no exchange of particles. The 

momentum vector of a particle or structure can also be affected by interactions during which 

two or more particle of structures will exchange lower order particles or structures. These are 

non-gravitational interactions which result in momentum transfer or momentum exchanges. 

We will show how all effects in nature result from one or a combination of these two types of 

interactions. 

Gravitational Interactions and Momentum 

According to QGD, there exist only two fundamental forces: n-gravity which is a repulsive forces 

acting between  
preons


and p-gravity, an attractive force which acts between  

preons


and 

gravity as we know it is the resultant effect of n-gravity and p-gravity. 

 
Preons


 exist in quantum-geometrical space which is composed of  

preons


. 
 

Preons


are 

also strictly kinetic so they must move by leaping from  
preons


 to  

preons


and, between 

leaps, transitorily pair with  
preons


to form    

|preon preon
 

pairs (which we will represent 

by 
 

preon

 ) which because of conservation of fundamental properties interact with other

   
|preon preon

 
pairs through both n-gravity and p-gravity. It follows that since all particles 

or structures are made of    
|preon preon

 
pairs, they must interact through both n-gravity 

and p-gravity. 

The combined effect of the n-gravity and p-gravity is what we call gravity. Hence gravity, 

according to QGD, is not a fundamental force but an effect of the only two fundamental forces it 

predicts must exist.  

 ;G a b , the gravitational interaction between two material structures ace a  andb , is the 

combined effect of the n-gravity and p-gravity interactions. So, to find  ;G a b we simply need 

to count the number of n-gravity and p-gravity interactions and vector sum them.  We do this as 

follows: 
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Since a  and b respectively contain  am  and bm  
preons

  and since every  
preon

  of a  

interacts with each and every  
preon

  of b , the number of  p-gravity interactions is given by 

the product a bm m  or the product of their masses  in  
preons

  .  

The n-gravity effect between a  
preon

  of a  and a  
preon

  b , the force that space exerts on 

a  and on b , is the sum of n-gravity interactions between them. Given a quantum-geometrical 

distance  d , which is the number  
preons

  from a 
 

preon

  of a and a

 
preon


  ofb  

(including a  andb  )  and given that all  
preons

  between a  and b  interact with each other,  

the number of n-gravity interactions is given by 

2

, ,

2

i j i j
d d

, where i  and j  respectively 

correspond to the thi  
 

preon

 of a  and the 

thj  
 

preon

 of b  .   And since a  and b  

respectively contain am  and bm  
 

preons

 , then the total number of n-gravity interactions 

between them is 

2

, ,

1
1

2

j

i

m

m
i j i j

i
j

d d





 . 

Using the relation g k g   we can express p-gravity in units equivalent to the magnitude of 

an n-gravity interaction which allows us to find the resulting effect from n-gravity and p-gravity 

interactions between a  andb . Thus the gravitational interaction between a  andb is given by 

 
2

, ,

1

1

2
;

j

i

m

m

i j i j

i

j

a b

d d
G a b m m k






   where the first component, a bm m k ,is the magnitude of the p-

gravity force acting between a  andb  and 

2

, ,

1
1

2

j

i

m

m
i j i j

i
j

d d





  is the magnitude of the n-gravity force 

between them. It is interesting to note here that 

2

, ,

1
1

2

j

i

m

m
i j i j

i
j

d d





 is the force exerted by quantum-

geometrical space itself on two particles or structures.  

At larger scales, for homogeneous spherical structures, we find that 

2 2
, ,

1
1

2 2

j

i

m

m
i j i j

a b

i
j

d d d d
m m




 
  where d  is the distance between the centers of gravity of a  and 
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b . This allows us to derive the simplified gravitational interaction equation

 
2

;
2

a b a b

d d
G a b m m k m m


   or  

2

;
2

a b

d d
G a b m m k

 
  

 
 .   

The reader should note that according to the QGD equation for gravity, the p-gravitational 

interaction is independent of distance. It is the number of n-gravitational interactions between 

two bodies, which is proportional to the square of the number of  
preons


 between them (the 

physical distance), that causes variations in the magnitude of the gravity. As we will now see, the 

effect of gravity on momentum (and speed) results from variations in distance. It space’s 

repulsive force determine the dynamics of systems. 

The Fundamental Momentum and Gravity 

That the momentum of the  
preon


 is fundamental is a postulate of QGD. It is equal to

 
p

P c c   . In fact, of all properties of the  
preon


, only its direction is variable. And the 

only thing that affects it is gravity. 

The direction of a 
 

preon


 is determined by the resultant of the gravitational interactions 

acting on it, which interactions are with free 
 

preons


,  particles or structures and if the 

 
preon


 is bound, with the

 
preons


that is it bound to. 

A change in direction of a 
 

preon


 is proportional to the change in the resultant of the forces 

acting on it. That is: 

   
1 2

2 1

p p s s
s s

P P G 


    where        
1 2 1 2 1 21 1

; ;
am n

i j i k
s s s s s s

j k

G G p p G p a
  

  
 

 
     

 
   is the 

resultant of the forces acting on the 
 

preon


 and    is the directional vector sum which we 

define as  

 

 

1 2
1

2

1 2
1

1 2
1

p
s s

s

sp
s s

s

p
s s

s

P G

P G c c

P G













 

   

 

.  

The directional vector sum describes the conservation of the momentum of the
 

preons


. The 

result of the directional is the normalized vector sum of the momentum vector of the
 

preon


and the variations in gravity vector G  between states 1s  and 2s . 
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Newton’s first law of motion is implied here since for 0G   we have     

1

p p

s s

P P 



 . 

We will see how Newtonian gravity emerges from gravitational interactions at the fundamental 

scale. 

Gravity between Particles and Structures 

Astrophysical observations which we shall discuss later suggest that 10010k , so that at short 

distances, the number of n-gravitational interactions being very low and the magnitude of the 

force being over a hundred orders of magnitude weaker than p-gravity. 

 
2

;
2

a b

d d
G a b m m k

 
  

 
 

The n-gravitational component of QGD equation for gravity is insignificant compared to the p-

gravitational component. Gravity at short scales being over a hundred orders of magnitude 

stronger than at that at large scales, it is strong enough to bind  
preons


into composite 

particles and composite particles into larger structures. 

Bound 
 

preons


 form particles and structures which then behave as one body which dynamic 

property is described by the momentum vector 
1

am

a i

i

P c


  which magnitude is its momentum. 

That is 
1

am

a a i

i

P P c


   . Because of that, the dynamics of particles and structures can be 

described simply as the evolution of their momentum vector 
aP  from state to state. 

Particles and structures are in constant gravitational interactions with all particles and structures 

in the entire universe. The direction of the momentum vector of a particle or structure at any 

position is the resultant of its intrinsic momentum and extrinsic interactions. Hence, if the 

structure of a particle or structure and its interactions remain constant, so will its momentum 

vector. Changes in momentum are due to variations in the magnitude and direction of the 

gravitational interaction, hence due to variations in their positions. 

For simplicity, we will start by describing the dynamics of a system consisting of two 

gravitationally interacting bodies.  

Consider bodies a  and b  in state 1s  which interact gravitationally in accordance to the 

equation  
1

2

;
2

a b
s

d d
G a b m m k

 
  

 
. Change in the momentum vector of the bodies from 
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1s  to the next causally related state 2s  is    
1 2 1 2 2 1

; ;a
s s s s s s

P G G a b G a b
 
      so that 

 
11

;a a a
ss s

P P G a b 


    and    
1 2 1 2 2 1

; ;b
s s s s s s

P G G a b G a b
 
      so that

 
11

;b b b
ss s

P P G a b 


    where 2s  is a successive state of our two body system. 

Here x
x

c v

c


 
   

 preserves the fundamental limit of the momentum of a particle or structure 

which we have shown cannot exceed its energy; that is: 
1 1

x xm m

i i

i i

c c
 

  . The bracket is the 

ceiling function so that for xc v  we have 1xc v

c

 
  

 and  
1 2 1 2

;x
s s s s

P G a b
 
    but for 

xv c   we have 0xc v

c

 
  

 and
1 2

0x
s s

P

  . And since the momentum of a particle or 

structure cannot exceed its energy, its maximum speed is 1max

xm

i

xi
x

x x

c
m c

v c
m m
  


.  

Note that for descriptions of dynamics system at speed below the speed of light, will simply 

write  
11

;a a
ss s

P P G a b


    and  
11

;b b
ss s

P P G a b


   with the understanding that x  is implicit 

and equal to 1.  

Derivation of the Weak Equivalence Principle 

The weak equivalence principle is easily derived from QGD’s equation for gravity 

 
2

;
2

a b

d d
G a b m m k

 
  

 
 where am  and bm  are respectively the masses of a  and b and 

d  the distance, all in natural fundamental units. 

According to QGD, the change in momentum due to gravity following the change in positions 

between two successive states 1s  and 2s  is equal to the gravity differential between the two 

positions  ;G a b .  That is:  
1 2 1 2

;a
s s s s

P G a b
 
   .  

QGD defines speed of a body as 
a

a

a

P
v

m
  and the acceleration of a body is 

a

a

a

P
v

m


  .  

Since  ;bP G a b   , the acceleration of an object a  due to the gravitational interacting 
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between a  and b  and
 ;a

a

a a

P G a b
v

m m

 
   . Then

 
2 2 2 2

1 1 2 2 1 1 2 2;
2 2 2 2

a b a b a b

d d d d d d d d
G a b m m k m m k m m k k

           
                

        

 then 
2 2 2 2

1 1 2 2 1 1 2 21

2 2 2 2
b a b b

a

d d d d d d d d
v m m k k m k k

m

             
                  

          
 

.  

Therefore, gravitational acceleration of a body a  relative a second body b  is independent of 

the mass of the first and dependent on the mass of the second. Conversely, the gravitational 

acceleration of an object b  relative to a  is given by 

2 2

1 1 2 2

2 2
b a

d d d d
v m k k

     
        

    
is independent of bm . So, regardless of their mass 

am , all bodies a   will be accelerated relative to a given body b  at the same rate.  

Note: The equation  
2 2

1 1 2 2;
2 2

a b a b

d d d d
G a b m m k m m k

    
       

   
 may not be algebraically  

simplified to  
2 2

1 1 2 2;
2 2

a b

d d d d
G a b m m

     
      

    
 since the information as to whether id d  , 

id d or id d would be lost and there would be no way to know whether the gravitational interaction at 

1d  or 2d  is attractive or repulsive (or one of each), thus no way to know if a body b  is gravitationally 

accelerated or decelerated relative to a  . For instance, if 2 1d d  , b  would accelerate away from a   when 

1d d and 2d d but would accelerate towards a  when 1d d and 2d d .Therefore, the gravitational 

interaction at each the initial and following positions must be calculated first, which gives the proper sign to 

each (negative meaning repulsive and positive meaning attractive) and only then should  ;G a b  be 

calculated. Finally,  ;G a b  has a different physical interpretation depending on whether id d  , id d

or id d . 

So a body b  moving away from a body a  will be gravitationally decelerated until it reaches a distance d  

from which distance it will be accelerated. It follows that a particle that moves at a less than the speed of light 

will be accelerated if the distance it travels is greater than d  (approximatively 10MPS).  The greater the 

distance from the source beyond d , the greater  its speed will be when it reaches the Earth. Particles moving 

at the speed of light are unaffected (see Why Nothing Moves Faster than the Speed of Light). 

The repulsive gravitational effect predicted by QGD between structures over large distances is supported by the 

recent discovery known as the dipole repeller. 

https://en.wikipedia.org/wiki/Dipole_repeller
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We have shown that the weak equivalence principle is a direct consequence of QGD’s equation 

for gravity which itself is derived from QGD’s axiom set.  

However, it is essential to keep in mind that the acceleration of a first body relative to a second 

body is independent of the mass of the first body does not mean that the effect of gravity on an 

object, the change in momentum it produces, is independent of its mass. 

But unlike gravitational acceleration, the resultant change in momentum is dependent on the 

mass of the accelerated body. A body a  that is n  times as massive as a body a  will experience 

a change in momentum n  times greater. The measurement of acceleration alone does not 

provide a measurement of the effect gravity has on distinct bodies.  

A major problem with classical mechanics description of gravity is how it relates force to 

acceleration and considers the change in momentum to be a consequence of the effect of a 

force on speed and not, as it should, the reverse. Classical momentum is also defined as the 

product of the speed of a body and its mass. Speed is function of time, which is a pure relational 

concept, and mass is a conventional definition and not a fundamental property of matter.  

According to QGD, the momentum vector of object is an intrinsic property given by 
1

am

i

i

c


  

where the mass, am , is the number of bounded 
 

preons


 of a  and each ic  correspond to the 

momentum vector of a bound
 

preon


. The speed of object is given by 
1

am

i

i

a

c

m




 . 

Gravity affects the resultant trajectories of the component  
preons


 , which changes the 

momentum. The change in speed is a consequence of the change in momentum and not the 

reverse. 

Given two object a  and b  both at the same distance from a massive structure, it is impossible 

to distinguish between them based on their respective acceleration, which makes acceleration 

the wrong property to measure if one wants to compare the effect of gravity on particles or 

structures.  

Variations in the gravitational interaction affect directly and instantaneously the momentum of 

the interacting bodies.  It is the variations in momentum that determine the variations in speed 

and not the reverse.  
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Comparison between the Newtonian and QGD Gravitational Accelerations 

From 
2 2

1 1 2 2

2 2
b a

d d d d
v m k k

     
        

    
 we have 

 
2 2

1 1 2 2 ;
2 2

b b a b

d d d d
m v m m k k G a b

     
          

    
 which is equivalent to Newton’s 

second law of motion relating force, mass and acceleration aF m v   where  ;F G a b   .   

The equations are very similar and it would be tempting to equate Newton’s second law and its 

QGD equation, but this cannot be done directly. 

Newtonian gravity varies with distance and is time independent. However Newton’s second law 

of motion when applied to gravity ignores the distance dependency but threats the force as if it 

were constant. And most importantly, despite the fact that Newtonian gravity is instantaneous 

(as must be its effects) Newtonian mechanics introduces a time dependency on the effect of 

gravitational acceleration. The introduction of the time dependency of the gravitational 

acceleration is not in agreement with Newton’s law of gravity. And while the time dependency 

approximates its dependency on distance (since d t   and b bv v  where bv is the 

classically defined speed) it introduces delays on the action which according to Newton’s law of 

gravity does not exist. 

Newton’s second law of motion applied to gravity gives 
 ;

b

b

G a b t
v

m


   where  ;G a b  

represents the Newtonian force of gravity.  Since the QGD equation is  
 ;

b

b

G a b
v

m


  , it 

follows that    ; ;G a b t G a b   . But the assumed time dependency of the effect introduces 

a delay in the effect of gravity on the momentum of a body while it should be instantaneous. So 

for Newtonian mechanics we have
 ;

b

b

G a bv

t m





while in QGD 

 ;
b

b

b b

G a bP
v

m m


    .  So 

the Newton’s law of motion introduces a delay of 
 ;

b bm v
t

G a b


  . 

Such delays of the effect of gravitational acceleration are very small since the distance between 

two positions in quantum-geometrical space is fundamental, and it would be difficult if not 

impossible to detect over short variations in distance, especially if there are no changes in 

direction of the gravitationally accelerated body. But over an astronomical number of changes in 

direction, such as experienced by a planet orbiting the sun, the predicted delays would add up 

to observable differences with the observed motion of the planet. As we will discuss in detail 



An Axiomatic Approach to Physics / by Daniel L. Burnstein 

- 17 - 
 

later in this book by removing the time dependency in accordance to QGD, Newtonian gravity 

can predict the precession of the perihelion of Mercury. 

If correct, the discrepancy between Newtonian mechanics’ prediction of the motion of Mercury 

and observation is due to the time dependency introduced when using Newton’s second law of 

motion; incorrectly making the effect of an instantaneous force dependent on time. 

It is also interesting to note that the application of general relativity to the motion of Mercury 

(or other bodies) does the exact opposite since the effect of a change in position of a body in a 

gravitational field instantly changes its direction because it instantly follows the predicted 

geodesics. This may explain why general relativity correctly predicts the precession of the 

perihelion of Mercury. 

Non-Gravitational Interactions and Momentum  

The momentum of a particle or structure may also change as the result of absorption of 

particles. 

For example, if a  absorbs a photon   then 
2 1

a a
s s

P P P  . Similarly, if it emits a photon then 

2 1

a a
s s

P P P  . Note that depending of the relative direction of a  and the absorbed photon, 
2

a
s

P

may be greater or smaller than 
1

a
s

P . 

The mass of particle or structure increases or is reduced by an amount that is equal to the mass 

of the absorbed or emitted photon (or other particle). 

Since 1

2

2

a
s

a
s a

s

P P

v
m



  and 
2

2

a
s

a
s

P
v

m

 the acceleration is inversely proportional to the mass of the 

object that is accelerated.  Gravitational acceleration being independent of its mass, there is no 

equivalence between gravity and non-gravitational acceleration as suggested by Einstein’s 

famous thought experiment. We will show that it is possible to distinguish the effect of gravity 

from constant acceleration because their effect on mass, momentum and energy are different 

for different bodies.  
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7. Transfer and Conservation of Momentum 

Also, a consequence of the discreteness of space is that the momentum of an object a   can only 

change by a multiple of its mass (each component  
preon


must overcome the effect of n-

gravity which are discrete units).  All changes in momentum obeys must obey the law 

a aP xm  .  

Changes in momentum due to variation in gravity are proportional to the mass of the body 

subjected to it so that  ; aG a b xm   a aP xm  law since. 

Gravity and variation in gravity between two objects are multiples of their masses of the object, 

but this is not the case for non-gravitational interactions.  

For instance, the momentum of a photon will only in special cases be a multiple of the mass of 

the object it interacts with. 

For instance, for an electron e


 and a photon  . Then we have the three possibilities: 

1. 
e

P xm   or 

2. 
e

P xm   or 

3. 
e

P xm   where x N   

In case 1, the momentum of the photon is below the minimum allowed change in 

momentum of the electron. The photon cannot be absorbed (become bounded) and so will 

be reflected or refracted depending on its trajectory relative to the electron. 

In case 2, the photon will be absorbed and 
e

P xm   . It this case, all its  
preons


  will 

become part of the electron’s structure, the electron’s mass will increase by m   its 

momentum by P  . 

In case 3, though the photon’s momentum is greater than the minimum allowed change in 

momentum for a , absorption n is not possible as it would imply a fractional change in the 

momentum of e


and thus is forbidden (a fractional change in momentum would imply that 

material structure could move between 
 

preons


which is not possible since there is no 

space which can hold them).  
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The electron can absorb the higher momentum (or energy since for photons P E   ) but 

to respect the a aP xm   law it must simultaneously emit a photon    that will carry the 

excess momentum. 

The emitted photon    is such that 
e

e

P
P P m

m



  





 
  
 
 

. 

This, we shall see later, describes why atomic electrons can only absorb photons have 

specific momentum and thus explain the emission and adsorption lines of elements. 

Momentum Conservation and Impact Dynamics 

A postulate of quantum-geometry dynamics is that space is fundamentally discrete (quantum-

geometrical, in QGD terms). If as QGD suggests the discreteness of space exists at a scale that is 

orders of magnitude smaller than the Planck scale then the fundamental structure of space (and 

matter) lies way beyond the limits of the observable. 

That said, the discreteness of space and matter, as described by QGD, carries unique 

consequences at observable scales. In fact, the laws that govern the dynamics of large systems 

can be derived from the laws governing space and matter at its most fundamental. 

We will now re-examine observations which, when interpreted by QGD, supports its prediction 

of the quantum-geometrical structure of space, more specifically, we will show the law of 

conservation of momentum at the fundamental scale explain the conservation of momentum at 

larger scales. 

The Physics of Collision and Conservation of Momentum 

Three laws govern the physics of collision: 

1. So, two objects cannot occupy the same space at the same time (a consequence of the 
preonic exclusion principle). 

2. The momentum of particles is conserved in non-gravitational interactions. 

3. Changes in the momentum of an object is a multiple of its mass or a aP xm  . 

For simplicity, let a  and b be two rigid spheres of same volume with momentum
aP and

bP , 

which are set on a direct collision course as in the figure below. 

When the spheres reach the position of impact, the first law applies. Neither sphere can occupy 

that position. So the spheres cannot move beyond the point of impact or, to be precise, the 

intersection of the volumes of the spheres along the line of impact, which is the line that passes 

through the centers of the spheres at impact.  

http://en.wikipedia.org/wiki/Planck_scale
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To satisfy the second law, the spheres a  and b in the simple example below must each emit 

photons whose momentums will be exactly those of  a  and b respectively. That is: 

1

a

i

n

a

i

m c P


  and 
1

b

i

n

b

j

m c P


  where an and bn are respectively the numbers of photons 

emitted at impact by a  andb . 

 

The photons emitted by a  will be absorbed by b , imparting it their momentum and the 

photons emitted by b will impart their momentum to a so that after impact 
1

b

i

n

a b

i

P m c P


  

and
1

a

i

n

b a

i

P m c P


    where aP and bP   are respectively the momentums of a  and b after 

impact. As a result of the impact, the spheres will move in opposite direction at speed 

b

a

a

P
v

m
  and 

a

b

b

P
v

m
 .2 

Case 2  

Consider two spheres of equal mass moving in the same direction as in the figure below. 

Here, at the point of impact, the forbidden component of the momentum of a in direction of b   

is given by  a b av v m , but the component momentum of b in direction of a is equal to zero. 

                                                           
2
 Note that for simplicity, we ignored here the changes in the masses of the spheres due to emission and 

absorption of photons. These variations in mass will be taken into account when significant. 
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That is  
1

a

i

n

a b a

i

m c v v m


  and 
1

0
b

j

n

j

m c


 , hence after impact the momentums of a  and 

b will be 

 a a a b a

a

a b a

a

a b

P P v v m

P
P v m

m

m v

   

 
   
 
 



 

 

We can see that Newton’s third law of motion is a direct consequence of the three laws 

governing collision physics but that it is not due, as Newton’s third law implies, to the second 

body exerting a force equal magnitude and opposite direction, but to the loss of momentum of 

the first through the mechanism we have describe and which is equal to the momentum is 

imparts to the second body. Newton’s third law of motion is special case of the laws of 

conservation of momentum of QGD. 

Consider the same setup as above. The third law says that b bP xm  . Now, if 
a bP xm , the 

momentum of a , which is the maximum momentum that it can impart, is smaller than the 

minimum allowable change in momentum of b . Hence b must emit back photons in opposite 

direction whose momentum is equal to the momentum of the photons emitted by a . Hence the 

Newton’s third law of motion. 

Case 3 

So far we have discussed the special cases of the physics of collision for spheres of similar 

volume which trajectories coincide. The same laws apply for all cases and when we take into 

account different angles and directions we find that: 
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  
1

a

i

n

a b a

i

m c v v m


  and 

 
1

b

j

n

b a b

j

m c v v m



   where av is the 

speed component of a towards b at the 

point of impact and bv is the speed 

component of b towards a at the point 

of impact.  

Now since a aP xm  and b bP x m 

and since
1

( 1)
b

j

n

a a

j

xm m c x m


    

and  
1

1
a

i

n

b b

i

x m m c x m


    , the 

momentum carried by photons emitted by a  that exceed the allowed change in momentum of 

b will emitted, reflected or refracted (generally as heat) as will the momentum carried by 

photons emitted by b  which exceed the allowed change in momentum of a . 

We will see now see how the laws that govern gravitational and non-gravitational change in 

momentum can be used to describe the dynamics of any system at larger scales. 

Generalization of Momentum Transfer 

Objects that collide are generally not spheres and even when they are, they are generally not of 

similar dimensions, mass, composition, etc.  

If aR  and bR  are the regions occupied by a  andb  respectively prior to impact. If aspan  is the 

regions of space spanned by a  in direction of b and bspan that of b in direction of a  then for 

bodies then: 

  a a b
a b b a a

a

R S S
P v v m

R


 
 

  and 

  .b a b
b a b a b

b

R S S
P v v m

R


 
 

 

 

In the figure above, a  is 
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represented by the sphere on the left and a a bR S S  is shown in red. Similarly, b a bR S S 

is in yellow. In this special illustrated here, a a a bR R S S   so that  a b b a aP v v m   . 

8. Axiomatic Derivations of Special and General Relativity 

Though the axiom sets of QGD and those of the special and the general relativity are mutually 

exclusive, our theory is not exempt from having to explain observations and experiments; 

particularly those which confirm the predictions of the relativity theories.  

We will now derive some of the key predictions of special relativity and general relativity and 

since a new theory must do more than explain what is satisfactorily explain current theories, we 

will also derive new predictions that will allow experiments to distinguish QGD from the 

relativity theories.   

Constancy of the Speed of Light 

Light is composed photons, themselves composites of  
preons


 which move in parallel 

directions. 

The speed of a photon is thus 

1 1

m m

i i
i i

c c
m c

v c
m m m








  

    

 
 which is the fundamental speed of  

preons


 and by 

definition constant. 

Why nothing can move faster than the speed of light 

We know that 
1

am

i

i

a

a

c

v
m





 and that 

1 1

a am m

i i

i i

c c
 

    then since  
1 1

a a
m m

i i
i i

a a

c c

m m

 

 
 and 

1

am

i

i a

a a

c
m c

c
m m

  


 it follows that av c  . 

The Relation between Speed and the Rates of Clocks 

QGD considers time to be a purely a relational concept.  In other words, it proposes that time is 

not an aspect of physical reality. But if time does not exist, how then does QGD explain the 

different experimental results that support time dilation; the phenomenon predicted by special 

relativity and general relativity by which time for an object slows down as its speed increases or 

is submitted to increased gravitation interactions? 

To explain the time dilation experiments we must remember that clocks do not measure time; 

they count the recurrences of a particular state of a periodic system. The most generic definition 
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possible of a clock is a system which periodically resumes an identifiable state coupled to a 

counting mechanism that counts the recurrences of that state. 

Clocks are physical devices and thus, according to QGD, are made of molecules, which are made 

of atoms which are composed of particles; all of which are ultimately made of bounded

 
preons


 . 

From the axiom of QGD, we find that the magnitude of the momentum vector of a  
preon


 is 

fundamental and invariable. The momentum vector is denoted by c the momentum is  c c .  

We have shown that the momentum vector of a structure is given by 
1

am

a i

i

P c


   and its speed 

by 
1

am

i

i

a

a

c

v
m





 . From these equations, it follows that the maximum possible speed of an 

object a  corresponds to the state at which all of its component  
preons


move in the same 

direction. In such case we have 
1 1

a am m

i i a

i i

c c m c
 

    and a
a

a

m c
v c

m
   . Note here that 

1

am

i

i

c


  corresponds to the energy of a  so the maximum speed of an object can also be defined 

as the state at which its momentum is equal to its energy.  

From the above we see that the speed of an object must be between 0  and c  while all its 

component  
preons


move at the fundamental speed of c .   

Now whatever speed a clock may travel, the speed of its  
preons


components is always equal 

to c  . And since a clock’s inner mechanisms which produce changes in states depends 

fundamentally on the interactions and motion of its component  
preons


 , the rate at which 

any mechanism causing a given periodic state must be limited by the clock’s slowest inner 

motion; the transversal speed of its component  
preons


.  

Simple vector calculus shows that the transversal speed of bound  
preons


 is given by 

2 2

ac v  where av  is the speed at which a clock a travels. It follows that the number of 

recurrences of a state, denoted t  for ticks of a clock, produced over a given reference distance 

refd  is proportional to the transversal speed of component  
preons


 , that is 
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2 2

a

ref

t
c v

d


  . As the speed at which a clock travels is increased, the rate at which it 

produces ticks slows down and becomes 0  when its speed reaches c .  

We have thus explained the observed slowing down of periodic systems without using the 

concepts of time or time dilation.  

The predictions of special relativity in regards to the slowing down of clocks (or any physical 

system whether periodic or not, or biological in the case of the twin paradox) are in agreement 

with QGD however, the QGD explanation is based on fundamental physical aspects of reality. 

Also, since according to QGD, mass, momentum, energy and speed are intrinsic properties of 

matter, their values are independent of any frame of reference, avoiding the paradoxes, 

contradictions and complications associated with frames of reference.  

However, though both QGD and special relativity predict the speed dependency of the rates of  

clocks, there are important differences in their explanation of the phenomenon and the 

quantitative changes in rate. While for special relativity the effect is caused by a slowing down 

of time, QGD explains that it is a slowing down of the mechanisms clocks themselves. 

If t  and t  are the number of ticks counted by two identical clocks counted travelling 

respectively at speeds av  and av  over the same distance 
refd  then QGD predicts that 

'2

2 '2 2

2 2 2

2

1

1

a

a

a a

v

c v c
t t t

c v v

c




    




.  

The speeds in the above equation are absolute so cannot be directly compared to special 

relativity’s equation for time dilation which is dependent on the speed of the one clock relative 

to that of the other. However, the special relativity equation can be derived by substituting for 

av  the speed of the second clock relative to the first clock v  , then av   must be the speed of the 

second clock relative to itself, that is 0av   , substituting in the equation above we get 

2

2
1

t
t

v

c


 



 which the special relativity equation describing time dilation.  

Then using the derivations 2 1

2 2

2 2
1 1

x xv t
x v t

v v

c c


     

 

 , y y   and z z   , we can easily 

derive the relation between two inertial frames of reference. 
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The Relation between Gravity and the Rates of Clocks 

We know that 
a

a

a

P
v

m
  then 

2 2 2

2

a

ref

a

a

t
c v c

d

P

m


   

 
 
 
 

. We have also shown that 

gravity affects the orientation of the component  
preons


 of structure so that 

 ;aP G a b    and 
 ;

a

a

G a b
v

m


   and since  

 ;
a a

a

G a b
v v

m


     in order to predict the 

effect of gravity on the rates of clocks, all we need to do is substitute the appropriate value in 

2 '2

2 2

a

a

c v
t t

c v


  


and we get  

 
 

2

2

2

2

2 2 2

2

;

;
1

1

a

a
a

a

a a

G a b
vG a b mc v

m c
t t t

c v v

c




  

    




 

And if  ; 0G a b   then the equation is reduced to t t    . 

As we can see, the greater the gravitational interaction between a clock and a body, the slower 

will be its rate of recurrence of a given periodic state. This prediction is also in agreement with 

general relativity’s prediction of the slowing down of clocks by gravity. 

Predictions 

QGD is in agreement with special relativity and general relativity’s predictions of the slowing 

down of clocks but it differs in its understanding of time. Time for the QGD being a relational 

concept is necessary to relate the states of dynamical systems to the states of reference 

dynamical systems that are clocks. Clocks are shown not to be measuring devices but counting 

devices which mark the recurrences of a particular state of a periodic system chosen are 

reference.  So if clocks are understood to measure time, then time is simply the number of times 

a given change in state occurs over a distance. It is not physical quantity. 

We have shown that the slowing down of clocks resulting from increases in speed or the effect 

gravity is explained not as a slowing down of time, but as a slowing down of their intrinsic 

mechanisms. 

The effects of time dilation predicted by special relativity and general relativity are both 

described by 

 
2

2

2 2

;
a

a

a

G a b
c v

m
t t

c v


 

  


 since this equation takes into account both the 
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effect of the speed and gravity on a clock. Thus, if QGD is correct, the predictions of SR and GR 

are approximations of particular solutions of the QGD equation. 

Although both general relativity and QGD’s predict changes in the speed of clocks subjected to 

variations in the magnitude of the gravity effect, their predictions quantitatively differ. There is 

hope that, in the next few years, experiments such as Atacama Large Millimeter/submillimeter 

Array in Chile will discover pulsars moving in proximity to the supermassive black hole predicted 

to exist at the center of our galaxy (SGR A). The predictions of general relativity would then be 

tested against variations of the rate at which pulsars emit pulses as they are subjected to the 

intense gravity of the black hole. QGD makes distinct predictions which could also be tested 

against the same measurements. 

Bending of light 

The reader will recall that using the second law of motion for gravitational acceleration 

introduces time delays on the effect of gravity which is incompatible Newtonian gravity which is 

instantaneous and, as we will see 

now, is the cause of the 

discrepancies between the 

Newtonian predictions and 

observations.  

According to QGD, photons are 

composed of  
preons


. It 

follows that photons interact 

gravitationally as do all other 

material structure. 

Applying the laws of motion to 

describe the effect of gravity on 

the trajectory of a photon 

coming into proximity to the sun 

 we find that a photon  

changes direction at a position 

ip  by an angle i  given by

 
1

; cos

2

i i
i

p p

i

G

c

 




 


  

where i  is the angle between the vector  
1

;
i ip p

G S 
 
  and the perpendicular to the vector 

P  (see top figure). The total angle of deflection   of a photon is then

  

    
  

    

 

 

http://www.almaobservatory.org/
http://www.almaobservatory.org/
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 
1

; cos

2

i i

i i
p p

i

G

c

 




 





 .  

The acceleration towards the sun 

expressed as units of distance per 

units of time. At the speed c  this 

corresponds to a displacement of 

the vector  
1

;
i ip p

G 
 
 equal to 

the distance travelled by a photon 

in one second or c  units of 

distance (figure on the right).  Since 

 
1

; cos

2

i i
i

p p

i

G

c

 




 


 for 

non-delayed gravity  and 

 ; cos

2 *2
i
t

G

c

 





 for delayed  

gravity then 
2

i
i
t





  and 

 ; cos

2
2

i

i
p N

t
i

G

c

 

 
 



  . QGD and non-delayed Newtonian gravity (which is a special 

case of QGD gravity) predicted angle of deflection  is exactly twice the angle t  predicted by 

Newtonian mechanics, hence in agreement with general relativity and observations. That is for 

.875"t   we get 1.75"  .  So Newtonian gravity, if correctly applied, gives the correct 

prediction. 

As a side note, it is interesting that there has never been an explanation as to why the angle of 

deflection predicted by Newtonian mechanics is exactly half that of the observed deflection. Not 

one third, one quarter, seven sixteenth, but exactly half. 

Precession of the Perihelion of Mercury 

The time dependency introduced when Newton’s second law of motion also causes errors in 

Newtonian mechanics predictions of the motion of planets which causes the discrepancy 

between the predicted position of the perihelion of Mercury and its observed precession. The 

general equation for the angle of deviation due to gravity is 
 

1

; cos

2

i i

i i
p p

i b

G a b

P






 





  so 

the angle of non-delayed gravitational deflection of Mercury from its momentum vector at a 

UNDELAYED GRAVITY DEFLECTION DELAYED GRAVITY DEFLECTION

   θ
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given position is 
 

1

; cos

2

i i

i i
p p

i b

G b

P






 





 . The angle for delayed gravity corresponds is 

obtained after a displacement of the gravity vector equal to 
bv t  that is: 

 

 
1

; cos

2

i i

i i
p p

t
i

b b

G b

P v t






 







 

 .  

Therefore, the angle of gravitational deflection for non-delayed gravity is greater from a given 

position xp  than for delayed gravity. The difference between   and
t



 is the cause of the 

discrepancy between observations of the position the perihelion and that predicted by 

Newtonian mechanics. So in order to correctly prediction the precession of the perihelion of 

Mercury, we need to reduce the effect of the time delays as much as possible. We can do so by 

making the interval t  as small as possible. For a given position we have 

 

 

 
1 1

0

; cos ; cos

lim
22

i i i i

i

i i
p p p p

t
bb b i

G b G b

PP v t

 



  

 

 


 

. 

And using the relation    
1

; ;
i ip p

G b G b
 
   where  ;G b t is the Newtonian gravity at 

a position ip  allows us to work in conventional units since 

 

 

 
11

0

; cos; cos
lim

22

i i

i

i
i i p p

t
bb b i

G bG b t

PP v t





 

 




 
. 

The angle of precession of the 

perihelion may then be obtained 

from initial position 0p  (in grey in 

the figure on the left) at a perihelion 

by calculating the position of the 

next perihelion (in red).  

The next figure compares the non-

delayed gravity prediction for a 

single orbit of Mercury (in red) in red 

to the prediction from Newtonian 

mechanics delayed gravity. 
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Orbital Decay of Binary Systems 

The mechanisms using which we described and explained the precession of the perihelion of 

Mercury in the preceding section also predicts the orbital decay of binary systems. Therefore we 

will not repeat the explanation here. Suffice to say all systems of gravitationally interacting 

systems are governed by the same laws and described by the same equations. QGD thus 

explains that the observed orbital decay such as that of the Hulse-Taylor system is not due to 

loss of energy emitted as gravitational waves. The two figures illustrate how the QGD 

predictions (in red) diverge from that of Newtonian mechanics (in black). 
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The figure below extrapolates the orbital decay over the large number of orbits. As we see, the 

orbital decay will eventually leads to a collision of the two stars. 

 

 

 

About the Relation Between Mass and Energy 

As we have seen, the energy of a particle or structure is given by 
1

am

a i a

i

E c m c


  . Though 

similar in form to Einstein’s equivalence equation, QGD’s does not represent an equivalence but 

a proportionality relation between energy, mass and c  which though numerically equal to c , 

the speed of light, here represents the intrinsic momentum of  
preons


.  This description of 

energy explains and provides the fundamental grounds for the principle of conservation of 

energy.  

According to QGD’s interpretation, when a body is accelerated by gravity, its mass and energy 

are both conserved. What changes is the net orientation of its  
preons


components. Hence, 

the object’s momentum, given as we have seen by 
1

am

a i

i

P c


  , changes.  

Applied to nuclear reactions, for example, we find that no mass is actually lost from its 

conversion to pure energy (there is no such thing as pure energy according to QGD). If the QGD 

prediction that photons have mass, a prediction that may be confirmed by deflection of light 

from the self-lensing binary systems, then the amount of mass that appears to have been 

converted to energy is exactly equal to the total mass of photons emitted as a result of the 

reaction. The so-called pure energy is actually the total momentum of the emitted photons. 

That is: 
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1
i

n

i

m m



 and 
1

i

n

i

E m c



  where m  is the mass of the photons resulting from the reaction 

and E , the momentum carried by the photons.  The reader will note that since the momentum 

vectors of the  
preons


 of photons are parallel to each other then

1 1

m m

i i

i i

c c
 

 

  , that is 

momentum and the energy of a photon are numerically equal. However, it is important to keep 

in mind that though they can be numerically equivalent, momentum and energy are two distinct 

intrinsic properties. 

The production of photons alone does not account for the total production of heat. Consider the 

nuclear reaction within a system 1S  containing 1n  particles resulting in 2S  , which contains 2n  

particles (including the n  photons produced by the reaction). Following QGD’s axioms, we find 

that the heat of 1S  and 2S  are respectively given by 
1

1

1

n

S i

i

heat P


  and

2

2

1 1
j

n n

S j

j j

heat P m c

 

   .   

The temperatures of 1S  and 2S  , immediately after the reaction, before the volume 2S  

expands are respectively 

1

1

1

1

n

i

i
S

S

P

temp
Vol



 and 

2

2

1

1

n

i

j

S

S

P

temp
Vol





 where 

1s
Vol is the volume of 

1S .    

Implications 

In its applications, the QGD equation relating energy, mass and the speed of light is similar to 

Einstein’s equation. However, the two equations differ in some essential ways. The most 

obvious is in their interpretation of the physical meaning of the equal sign relating the left and 

right expressions of the equation. For QGD, the equal sign expresses a proportionality relation 

between energy and mass while Einstein’s equation represents an equivalence relation.  

Also, the equivalence interpretation of Einstein’s equation implies the existence of pure energy 

and pure mass. QGD’s axioms imply that mass and energy are distinct intrinsic properties of

 
preons


hence inseparable. 

QGD’s fundamental definitions of mass, energy, momentum and speed that can be applied to all 

systems regardless of scale.  
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9. Other Consequences of QGD’s Gravitational Interaction Equation 

Effects Attributed to Dark Matter 

Another implication of the axiom set of QGD which will be discussed in detail in the cosmology 

section of this book follows what the initial state of the universe it predicts. In its initial state, 

the only matter was in the form of free  
preons


 which were isotropically distributed 

throughout quantum-geometrical space.  

During the isotropic state,  
preons


, as a consequence of the attractive force acting between 

them, started to form the simplest of all particles; low mass photons and neutrinos.  And 

because  
preons


 were distributed isotropically, so was the distribution of these newly formed 

photons. If QGD’s description of the early stages of the universe is correct, then these 

isotropically distributed photons have been first observed in 1964 by Arno Penzias and Robert 

Wilson and correspond to the cosmic microwave background radiation.  

If, as QGD predicts, most  
preons


in the universe are still free, their gravitational effect on 

particles and structure may account for the dark matter effect.  

That  
preons


interact too weakly with matter, hence with instrumentation, to be directly 

observed may explain why dark matter hasn’t been detected directly. Individually, their mass is 

too small to have an effect on structures (or instruments) and their momentum insufficient to 

impart any measurable change in the momentum of larger particles or structures. But 

collectively, over a large enough regions of space, their cumulative mass will strongly interact 

with large structures or systems.  

Effects Attributed to Dark Energy 

QGD’s equation for gravity allows for either attractive gravitational interaction,  ; 0G a b   

when
2

2

d d
k


 , and repulsive gravitational interaction,  ; 0G a b   when

2

2

d d
k


 .   For 

distances shorter than the threshold distance d  where 
2

2

d d
k


 , where  ; 0G a b   

regardless of am  and bm ,  p-gravity overcomes n-gravity , but at distances beyond  d , gravity 

is repulsive and increases proportionally to the square of the distance. And acceleration being 

proportional to the derivative of gravity, QGD predicts a linear increase in acceleration as a 

function of distance. 

QGD equation for gravity’s prediction of repulsive gravity beyond the threshold distance may 

explain the acceleration we attribute to dark energy. 
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To resume, we have 

shown that the same 

equation 1., describes at 

very short distances the 

number of p-gravity 

interactions, hence the 

attractive gravity, is over a 

hundred orders of 

magnitude greater than 

gravity at large scale, 2., 

describes gravity at scales 

at which we apply 

Newtonian gravity, and 3., 

that at very large scale the 

equation accounts for the 

effect we attribute to dark energy.  

It follows that for distances between material structures greater than the threshold distance d

, and assuming there is no matter in the space that separates them, the gravitational interaction 

will be repulsive and proportional to the square of the distance beyond d , resulting in a 

gravitational acceleration proportional the distance. 

We have also shown that the effect we attribute to dark matter can be the gravitational effect 

of free  
preons


 over large regions of space.  

The Weak Equivalence Principle 

According to QGD, there is only one definition of mass: the intrinsic mass of an object being 

simply the number of  
preons


  it contains. The intrinsic mass determines not only the effect of 

gravity but all non-gravitational effect.  

The gravitational mass is that property which determines the magnitude of gravitational 

acceleration while the inertial mass determines the magnitude of non-gravitational acceleration.  

It is important in describing a dynamic system that we understand that the distinction made 

between the gravitational and inertial masses are actually distinctions between gravitational 

and non-gravitational effects. Doing so, we will show that the intrinsic mass determines both 

gravitational and non-gravitational effects and that these effects are very distinct, thus 

distinguishable. 
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The acceleration of an object is given by 
a

a

a

P
v

m


   where aP G    for gravitational 

acceleration and aP F    for non-gravitational force F imparting momentum to a .  From 

2 2 2 2

1 1 2 2 1 1 2 21

2 2 2 2
a a b b

a a

G d d d d d d d d
v m m k k m k k

m m

              
                   

          

 we know that gravitational acceleration is independent of the mass of the accelerated body, 

while a

a

F
v

m
   tells us that non-gravitational acceleration is inversely proportional to the 

mass of the accelerated body.  

Let us consider the experiments represented in the figure below which based on Einstein’s 

famous thought experiment. 

The green rectangles represent a room at rest relative to Earth’s gravitational field.  

The Earth and green room dynamics is described by the equation
g

g
g

P P
v v

m m





       

where g represents the green room and  the Earth. Applying the laws of momentum 

discussed earlier, we know that green room and the Earth are moving at the same speed hence, 

since   0
g g

v v m


  and   0
g

v v m
 
   there is no momentum transfer between the 
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Earth and the green room, consequently no non-gravitational acceleration. And since there is no 

change in distance between g  and  , there is no variation in the gravity, so no gravitational 

acceleration either. 

The red room is in region of space where the effect of gravity is negligible. A non-gravitational 

force imparts momentum F   to the red room from the floor up.  

Einstein’s thought experiment assumes that it is possible to apply a force which will accelerate 

the red room so that, to an observer within the room, the acceleration will be indistinguishable 

from that of gravity. That is, He assumes that F G   .  

Before going into a full description of the experiment, we need to keep in mind the distinctions 

between gravitational acceleration and non-gravitational acceleration. For one, gravitational 

acceleration of body is independent of its mass while non-gravitational acceleration of a body is 

inversely proportional to its mass. That is: 
 F a F

a

a

v v m
v

m


   where Fv is the speed of the 

particles carrying the momentum F  (in the case of a rocket engine, this is the speed of the 

molecules of gas produced by the engine which interact with the room) and av  the speed of the 

room. It follows that we can set F G    for a given am
 but for an object of mass b am m

 , we 

can have F G   but F F   and 
   F a F bF F

a b

a b

v v m v v m
v v

m m

 
     . Which means 

that, to maintain an acceleration equivalent to gravitational acceleration,  F  must be adjusted 

to take into account the mass of the accelerated to compensate for its speed since the imparted 

momentum of a rocket engine (or any other form of propulsion) decreases as the speed 

increases. 

Returning to experiment 4, the green and red rooms will have the same mass and composition. 

In each room, there will be a set of two spheres of mass am  and bm  where a bm m  . In the 

rooms initial state the spheres are suspended from rods fixed to the ceilings. The spheres can be 

released on command. In each of the room is an observer that is cut off from the outside world. 

They have no clue as to which of the two rooms they are in. The observers however, being 

experiment physicists, are trusted to measure the accelerations of the spheres in the two 

experiments and see if they can determine whether the room each is in is at rest in a 

gravitational field or uniformly accelerated. 

In the first experiment, the spheres with mass am  will be dropped in each room. In the second 

experiment, from the same initial state, spheres with mass bm will be dropped. The observers 

will compare the results. 



An Axiomatic Approach to Physics / by Daniel L. Burnstein 

- 37 - 
 

The green room observer finds that both spheres have the same rate of acceleration relative to 

the room despite having different masses. He finds this to be consistent with gravitational 

acceleration, but cannot exclude on these two experiments alone that he may be in a uniformly 

accelerated room. 

The red room observer however finds that rate of acceleration of the a  sphere is lower than 

the rate of acceleration of the more massive b  sphere. His observations of the accelerations of 

the spheres being inconsistent with gravitational acceleration he must conclude that the room is 

accelerated by an external non-gravitational force F .  

Furthermore, being a physicist, the red room observer knows that at the moment a sphere is 

released, the momentum imparted by F  is no longer transferred to the sphere. The sphere 

stops accelerating instantly and will move at the speed it had at the moment of its. Therefore, it 

is the room that is accelerated and not the sphere.   The acceleration of the red room in its 

initial sate is 
r

a br

F
v

m m m


 


 .  At the moment the a   sphere is released, there is a 

sudden change in the rate of acceleration of the room given by 

r

b a br r

F F
v

m m m m m
  

  
. The change the rate of acceleration after the release of 

sphere b  is 
r

a a br r

F F
v

m m m m m
  

  
.  The higher variation the in the rate of 

acceleration after the release of b  is seen from within the room as a larger acceleration of b  

relative to the room.  

So, it appears that observers can easily distinguish between being in a room at rest in a 

gravitational field from being in a uniformly accelerated room away from any significant 

gravitational field. This appears to invalidate the weak equivalence principle. Being an 

experimental physicist, the observer in the red room requires confirmation of his observation. 

He decides to repeat the experiment. After all, one experiment is not enough and one has to be 

able to reproduce the results before doing something so drastic as to refute the weak 

equivalence principle. 

Again the more massive sphere accelerates faster than the lighter sphere, but something is 

different. The acceleration rates of sphere a  and sphere b  in the second set of experiments are 

slower than the accelerations of the same spheres in the first set of experiments. After 

conducting a few more experiments he finds the observations to be consistent with 

 F Fr r
P v v m    and concludes that the momentum imparted by the non-gravitational 

force decreases as speed of the room increases which allows him to predict that the maximum 
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possible speed the red room can achieve is  
Fr

v v  at which speed   0
F Fr r

P v v m     

and 0
r

r

r

P
v

m


   .  

If experiments confirm QGD predictions that: 

 Gravitational acceleration and non-gravitational acceleration are not equivalent then 
o The weak equivalence principle is falsified 

 The outcome of an experiment may be affected by the speed of the laboratory then 
o The strong equivalence principle is falsified 

10. Conclusion 

We have shown that from a simple consistent axiom set, a theory can be derived that 

can describe dynamic systems at different scales in a manner that is consistent with 

observational and experimental data. However, we understand any number of theories 

can explain observations  a posteriori  and that the only valid test of a theory is the 

experimental or observational confirmation of predictions that are original to it.  

Testing some predictions quantum-geometry dynamics require new observations while 

others may need nothing more than reanalysing data already accumulated from the 

observations from the different telescopes and experiments.  It is our hope that 

physicists and astrophysicists find the arguments of this paper sufficiently compelling to 

put QGD’s predictions to the test. 

 

Further reading: 

For a more detailed discussion or applications of QGD to other areas of physics, see 

Introduction to Quantum-Geometry Dynamics. 

http://www.quantumgeometrydynamics.com/blog/introduction-to-quantum-geometry-dynamics/

